
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Adapting speaking after evidence of misrecognition:
Local and global hyperarticulation

Amanda J. Stent a,c,*, Marie K. Huffman b, Susan E. Brennan a,c

a Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
b Department of Linguistics, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
c Department of Psychology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA

Received 14 November 2006; received in revised form 27 July 2007; accepted 28 July 2007

Abstract

In this paper we examine the two-way relationship between hyperarticulation and evidence of misrecognition of computer-directed
speech. We report the results of an experiment in which speakers spoke to a simulated speech recognizer and received text feedback about
what had been ‘‘recognized’’. At pre-determined points in the dialog, recognition errors were staged, and speakers made repairs. Each
repair utterance was paired with the utterance preceding the staged recognition error and coded for adaptations associated with hyper-
articulate speech: speaking rate and phonetically clear speech. Our results demonstrate that hyperarticulation is a targeted and flexible
adaptation rather than a generalized and stable mode of speaking. Hyperarticulation increases after evidence of misrecognition and then
decays gradually over several turns in the absence of further misrecognitions. When repairing misrecognized speech, speakers are more
likely to clearly articulate constituents that were apparently misrecognized than those either before or after the troublesome constituents,
and more likely to clearly articulate content words than function words. Finally, we found no negative impact of hyperarticulation on
speech recognition performance.
Published by Elsevier B.V.
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1. Introduction

Speech recognition technology has made its way into
many telephone and information applications in wide use
by the general public; people routinely encounter the
option of speaking to a machine when they request phone
numbers, make collect calls, and seek information about
schedules, events, or accounts. Most speech applications
used by the public achieve acceptable performance by

strongly constraining what users can say—for instance by
asking users questions with yes or no answers or by pre-
senting menus containing just a few items with short labels
that users are invited to repeat. By seizing most or all of the
initiative, spoken dialog systems increase the likelihood
that input utterances will be predictable and recognizable
(Schmandt and Arons, 1984; Schmandt and Hulteen,
1982). In contrast, applications that recognize spontane-
ous, unconstrained utterances, such as dictation programs,
have many fewer users, who need to be motivated enough
to co-train with a particular application over time.

A long-standing goal of the speech and dialog research
communities has been to enable less constrained, more flex-
ible, mixed-initiative interaction with spoken dialog sys-
tems (e.g., Allen et al., 2001; Gorin et al., 2002); this goal
has yet to be realized. The problem is that speech is highly
variable. In addition to those variations characteristic of
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individual speakers (e.g., voice quality, dialect, and idio-
syncratic pronunciation), there is variation in lexical choice
and choice of syntactic structures, as well as prosodic or
articulatory variability (due, e.g., to emphasis, affect, flu-
ency, or even the speaker having a cold). Generally speak-
ing, variability is associated with error: larger vocabularies
and greater syntactic flexibility are associated with higher
perplexity and, correspondingly, with higher word error
rates (Huang et al., 2001), and disfluent or fragmented
utterances, with recognition errors (Core and Schubert,
1999). To the extent that a source of variability is system-
atic, it can be described and modeled, which (in theory
at least) should lead to ways in which to handle it
successfully.

Through the experiment presented in this paper, we
examine the causes and consequences of a kind of adaptive
variation in speaking that has been loosely labeled hyperar-
ticulation. When speakers believe that their addressees can-
not understand them, they adapt in a variety of ways, such
as by speaking more slowly, more loudly, and more clearly.
Speakers have been found to adapt their speech to babies
(Fernald and Simon, 1984), to foreigners (Ferguson,
1975; Sikveland, 2006), in noisy rooms (Summers et al.,
1988) or on cell phones, as well as to computer-based
speech recognizers. Each of these situations inspires a set
of distinct but overlapping adaptations (see Oviatt et al.,
1998a,b for discussion). For example, utterances directed
to young children as well as those directed to speech recog-
nizers tend to be shorter than those to adults; at the same
time, child-directed speech typically has expanded pitch
contours (Fernald and Simon, 1984) while machine-direc-
ted speech does not. Although hyperarticulation can
improve intelligibility in speech directed at people (Cutler
and Butterfield, 1990; Picheny et al., 1985), especially in
the listener’s native language (Bradlow and Bent, 2002),
it can also result in increased error rates in automated
speech recognizers (Shriberg et al., 1992; Soltau and Wai-
bel, 1998; Wade et al., 1992).

The relationship between hyperarticulation in speaking
and misrecognition by computers is thought to be bi-direc-
tional. This relationship has been described by some as a
spiral in which evidence of misrecognition causes speakers
to hyperarticulate, in turn causing even more recognition
errors (e.g., Hirschberg et al., 1999; Levow, 1998; Oviatt
et al., 1998a; Soltau and Waibel, 2000b). For example, in
one study of machine speech recognition, an utterance pro-
duced right after a misrecognized utterance was itself mis-
recognized 44% of the time, compared to only 16% when
produced after a correctly recognized utterance (Levow,
1998). Because of such observations, it has been widely pre-
sumed that increased error rates in automatic speech recog-
nition are due to hyperarticulation. However there is a
shortage of systematic data documenting the effects of spe-
cific features of hyperarticulation on speech recognition
performance, as well as the persistence or actual time
course of this kind of adaptation over the course of a
human–machine dialog.

1.1. Elements of hyperarticulation

Hyperarticulation is really an umbrella term for many
different adaptations in speaking, including prosodic adap-
tations due to speaking more slowly, pausing more often,
and speaking more loudly, as well as segmental adaptations
due to replacing reduced or assimilated forms of vowels
and consonants with more canonical forms. As used in
the literature, the term hyperarticulation is sometimes equa-
ted with clear speech, and often contrasted with casual
speech (e.g., Moon and Lindblom, 1994) or conversational
speech (e.g., Picheny et al., 1986; Levow, 1998; Krause
and Braida, 2004). But the distinction is not a simple bin-
ary one. Hyperarticulate speech is a gradient phenomenon
(e.g., Moon and Lindblom, 1994; Oviatt et al., 1998b); the
properties of speech that vary during hyperarticulation do
not all vary at the same rates or under the same conditions.

Perhaps the most detailed analyses of both prosodic and
segmental aspects of hyperarticulate speech have been pro-
vided by Oviatt and colleagues (Oviatt et al., 1998a,b).
These studies examined the duration of utterances, seg-
ments and pauses; pause frequency; F0 minimum, maxi-
mum, range and average; amplitude; intonation contour;
and the incidence of these segmental features: stop conso-
nant release, /t/ flapping, vowel quality, and segment dele-
tion. These studies used a simulated (‘‘Wizard of Oz’’)
multimodal spoken dialog system and a form-filling task.
Users were given staged error messages at random points
in the dialog; this elicited matched pairs of short utterances
with the same wording by the same speaker, produced
before and after evidence of speech recognition error. In
a corpus of 250 paired utterances, speakers spoke more
slowly (by about 49 ms/syllable) and paused longer and
more often after evidence of recognition failure than
before, whether they experienced high (20%) or low
(6.5%) error rates; this hyperarticulation was not accompa-
nied by much variation in amplitude and pitch (Oviatt
et al., 1998b). Only the speakers who experienced the
higher error rate produced clearer phonetic segments
(e.g., released stop consonants) after error messages than
before (Oviatt et al., 1998b).

The second study in this series by Oviatt and colleagues
provided acoustic evidence that hyperarticulation in speech
to machines is targeted to the perceived problem within an
utterance, rather than produced as a persistent, non-spe-
cific adaptation in speaking style. A somewhat larger cor-
pus of 638 pairs of utterances produced by 20 speakers
(and elicited using the same task, the same simulated-error
technique, and a 15% error rate, with errors distributed
randomly during the dialog) yielded consistent increases
in features of hyperarticulation across paired utterances
(Oviatt et al., 1998b). These included prosodic adaptations
such as increased duration and pausing as well as segmen-
tally clearer forms on 6% of repetitions. In a further anal-
ysis of 96 paired utterances, speakers hyperarticulated most
during the part of the repaired utterance perceived to have
been problematic (Oviatt et al., 1998b). That is, speech at
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the focal area of the repair was greater in pitch range
(11%), amplitude (1%), pausing (149%), and duration
(11%) than adjacent segments before or after.

Another study (Levow, 1999) analyzed spontaneous
commands directed at an interactive, working system (the
Sun Microsystems SpeechActs system). Utterances pro-
duced following two types of system error were analyzed:
those after a general failure (where the system simply indi-
cated that it could not process the input) and those after a
misrecognition (in which part of the utterance was cor-
rectly recognized and part was not, as evident from the
feedback provided to the user). Both types of error resulted
in more pausing and longer word durations, particularly in
utterance final position, but the effect was stronger after
misrecognition errors. In addition to these prosodic
changes, there were also segmental changes during repairs,
in the form of higher incidence of full vowels and released
stop consonants. These segmental changes apparently did
not depend on the type of the preceding error (misrecogni-
tion or general failure).

1.2. Effects of hyperarticulation on automatic speech
recognition

Although hyperarticulation has been widely blamed for
speech recognition errors (e.g., Levow, 1999; Oviatt et al.,
1998a,b), the effect is by no means large, determinate, or
well understood. Relatively few studies have systematically
examined the effects of hyperarticulate speech on auto-
mated speech recognition (ASR). One set of studies (Shri-
berg et al., 1992; Wade et al., 1992) looked at dialogs
with a working spoken dialog system, DECIPHERTM, with
which speakers were able to take substantial initiative
and produce spontaneous, relatively long utterances.
Speakers experienced a higher word error rate in their first
session with DECIPHERTM than their second (20.4% vs.
16.1%), suggesting that they successfully adapted their
speech to the system over time. In this experiment, the
speakers’ recorded utterances were subjectively categorized
by human raters on a three-point scale as natural-sound-
ing, hyperarticulated in portions, or completely hyperartic-
ulated and then re-processed through the speech recognizer
with a bigram and a ‘nogram’ language model. Overall,
reduction in word error rate for utterances from the first
to the second session was about 4% regardless of language
model, suggesting that the reduction in word error rate was
due to speakers’ prosodic and segmental adaptation rather
than any adaptation to the system’s grammar.

Most speakers in that experiment actually reduced their
use of hyperarticulation from the first to the second ses-
sion. However, improved performance by DECIPHERTM

was due not only to reduced frequency of hyperarticula-
tion, but also to adaptation in the nature of hyperarticula-
tion. While utterances rated as strongly hyperarticulated
yielded higher word error rates than ones not so rated, even
the strongly hyperarticulated utterances from the second
session were better recognized than the strongly hyperartic-

ulated ones from the first session (Wade et al., 1992). Wade
et al. documented that over time, the hyperarticulated
utterances actually became more acoustically similar to
the data on which the speech recognizer had originally been
trained (whereas the natural-sounding utterances did not).
This set of findings highlights the need to better understand
just what about the broad category of ‘‘hyperarticulation’’
is detrimental to speech recognizer performance; the map-
ping of speaking style to word error rate is not a simple
one.

Another study that used corpora of utterances directed
to a working spoken dialog system (the TOOT and W9 cor-
pora, Hirschberg et al., 1999, 2000, 2004) analyzed the
acoustic–prosodic characteristics of recognized vs. misrec-
ognized utterances. Significant differences were found in
loudness, pitch excursion, utterance length, pausing, and
speaking rate. As in the studies by Shriberg et al. (1992)
and Wade et al. (1992), utterances were rated subjectively
on a three-point scale as to whether they sounded hyperar-
ticulated. Utterances rated as sounding hyperarticulated
were more likely to have been misrecognized, and misrec-
ognized utterances had higher hyperarticulation ratings;
moreover, utterances rated as not hyperarticulated were
more likely to have been misrecognized when they were
higher on objective loudness, pitch, and durational mea-
sures (Hirschberg et al., 1999). In follow-on work, Hirsch-
berg et al. identified and labeled corrections in these
corpora; compared to non-corrections, corrections were
significantly longer and louder and had a slower speaking
rate, longer prior pause, higher pitch and less silence.
52% of corrections vs. 12% of non-corrections were subjec-
tively rated as sounding hyperarticulated. Corrections were
more likely to be misrecognized than non-corrections, and
hyperarticulated corrections than non-hyperarticulated
ones. However, the number of misrecognized corrections
varied by type, with corrections including additional infor-
mation and paraphrases being misrecognized at higher
rates than repetitions and corrections omitting information
(Litman et al., 2006).

A third set of studies confirmed that hyperarticulation
lowers word accuracy in ASR (Soltau and Waibel, 1998,
2000a,b). These studies elicited a corpus of highly confus-
able word pairs in either German or English as baseline
pronunciations, for comparison with pronunciations after
simulated evidence of error in a dictation task. These
ASR studies measured not only adaptation in speaking rate
but also hyperarticulation of phonetic segments. In Eng-
lish, phone duration increased by 28% on average (44%
for voiced plosives but only 16% for vowels; Soltau and
Waibel, 2000a) and in German, 20% (with the greatest
increases for voiced consonants and schwa sounds, Soltau
and Waibel, 2000b). Recognition of before and after error
tokens of isolated words was compared using the JANUS-
II speech recognition toolkit (with a 60K vocabulary for
German and a 30K vocabulary for English). These studies
report on the order of 30% more errors in hyperarticulate
than casual speech (Soltau and Waibel, 2000a).
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1.3. Strategies for avoiding hyperarticulation

Although users of spoken dialog systems are often
explicitly instructed to speak naturally, it is questionable
whether this strategy works for minimizing misrecognition.
For example, when speakers in one study were told not to
‘‘overenunciate’’, they produced utterances that yielded
lower subjective ratings of hyperarticulation, and yet this
adjustment did not result in reliably lower ASR error rates
(Shriberg et al., 1992).

Oviatt and colleagues (Oviatt et al., 1998b) also looked
for prosodic and segmental differences in speech in
response to three different kinds of error messages: those
for which users saw only the message ‘‘????’’, those for
which the system apparently substituted a related (seman-
tically plausible) word in the utterance, and those for which
it substituted an unrelated (semantically implausible) word.
These situations (experienced by all the speakers) led to no
differences in prosodic or segmental measures of
hyperarticulation.

To summarize, previous research on hyperarticulation
in human–computer interaction has shown that when
speakers experience misrecognition, they adapt by exagger-
ating their speech: speaking more loudly and more slowly,
with greater variety in pitch, and with greater attention
paid to the articulation of certain phonemes. Speakers
focus their hyperarticulation on the part of the utterance
that was misrecognized. The impact on speech recognition
performance is unclear: Misrecognized utterances exhibit
features of hyperarticulation, and on isolated word tasks
hyperarticulate tokens are more likely to be misrecognized.
On the other hand, in spoken dialog to a computer where
users can produce continuous speech, reduced word error
rates over time are partly due to adapation in the nature
of hyperarticulate speech and to syntactic and lexical adap-
tation, as well as to reduction in the amount of hyperartic-
ulate speech.

1.4. Rationale and predictions

Our goal for the current project was to investigate:

(1) How speakers adapt spontaneous speech directed at
spoken dialog systems after they receive evidence of
misrecognition. When speakers encounter evidence
that an utterance was misrecognized, they should
repair by repeating the utterance more slowly; and
forms that had been relaxed in the ‘‘before’’ utterance
should tend to be replaced by clear forms in the
‘‘after’’ version.

(2) How long adaptations in response to evidence of mis-
recognition persist during a dialog. We expected that
segmental adaptations would be targeted to trouble-
some parts of the utterance (local adaptation); we were
interested in whether segmental and prosodic adapta-
tions would persist over turns (global adaptation). We
were particularly interested in whether hyperarticula-

tion to a computer is like a ‘‘switch’’: an adaptation
that, once turned on, persists mostly independent of
later system behavior (as suggested by the notion of
‘‘spiraling errors’’); or whether it is like a ‘‘dial’’ that
is adjusted gradually during the interaction.

(3) When (or whether) adaptations in response to evi-
dence of misrecognition cause problems for speech
recognition. We investigated the effects of hyperartic-
ulation on ASR systems trained on broadcast speech
and conversational speech and configured with differ-
ent statistical language models (word list, unigram,
bigram, and trigram), as well as for a grammar-based
ASR. We were not primarily interested in staging a
competition between ASR systems, but in establish-
ing whether the features of hyperarticulate speech
are really as severe a problem as has been assumed,
and which features of hyperarticulation (prosodic or
segmental) are problematic.

Because speech read aloud has different prosodic, seg-
mental, and fluency characteristics than spontaneous
speech, and because we wanted to examine speech gener-
ated by speakers who were trying to repair errors, we did
not have speakers read sentences aloud, as in most other
controlled studies of hyperarticulation (e.g., Harnsberger
and Goshert, 2000; Johnson et al., 1993). We used a Wiz-
ard-of-Oz procedure (adapted from Brennan, 1991, 1996;
Oviatt et al., 1998a,b) to collect a corpus of spontaneous
utterances from naive volunteer speakers who were led to
believe that they were interacting with an ASR in order
to enter information into a computerized database. In fact,
the system’s responses were simulated by a human operator
behind the scenes. To elicit paired tokens with identical lex-
ical and syntactic content from each speaker that could be
compared for hyperarticulation, we adapted Oviatt and
colleagues’ (Oviatt et al., 1998a,b) and Soltau and Waibel’s
(1998) method of simulating errors by providing spurious
error messages so that speakers would spontaneously
repeat utterances.

We wished to extend Oviatt and colleagues’ findings by
looking not only at focal prosodic adaptations within
repairs, but also at segmental adjustments before, during,
and after the problematic word(s). Unlike Oviatt et al.
(1998a,b), our errors appeared at pre-planned locations
in the dialog for all the speakers, so that we could examine
designated target words for hyperarticulation. This was an
important property of the corpus we collected, as it enabled
us to systematically conduct both local and global analyses
of the persistence of hyperarticulation by multiple speak-
ers, over multiple utterances, and across parts of the dialog
that had higher and lower incidence of errors. We also
wished to extend previous research on the impact of hyper-
articulation in spoken dialog to a computer by looking at
the impact of hyperarticulate speech on automatic speech
recognition.

We used a task that enabled us to elicit spontaneous
speech in the form of complete sentences containing multi-
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ple tokens of words with specific phonetic segments, artic-
ulated within controlled contexts. This is difficult to do, but
not impossible (e.g., Brennan, 1996; Kraljic and Brennan,
2005). Fortunately, what speakers choose to say can be
constrained implicitly by the dialog context to some degree.
Previous studies of lexical and syntactic entrainment have
demonstrated that speakers are strongly influenced by a
dialog partner’s words and syntax and tend to re-use these
elements (Brennan, 1991, 1996; Brennan and Clark, 1996).
In fact, the tendency to entrain on a partner’s wording and
syntax occurs not only with human partners, but also with
computer partners (Brennan, 1991), and this is true
whether the currency of communication is speech or text
(Brennan, 1996).

We aimed to collect a speech corpus that met the follow-
ing criteria: it should contain (1) spontaneous speech, (2) in
the form of sentences, (3) by multiple speakers, (4) who pro-
duced target words with particular phonetic segments, (5) in
relatively controlled phonetic environments, (6) in a dialog
context in which they received responses contingent upon
their utterances, (7) enabling us to collect paired tokens of
the same utterance, before and after the speaker received
evidence that the utterance was misrecognized.

2. Method

2.1. Task and setup

We designed an information-entry task to elicit sponta-
neously planned yet predictable utterances. Participating
speakers were supplied with a one-page spreadsheet depict-
ing a database of a hypothetical children’s softball team
containing the children’s names, positions on the team,
parents’ occupations, and what the children would bring
to sell at two fund-raising events (a food and kitchen items
sale and a garage sale). Speakers were to use this spread-
sheet to look up the answers to questions they would be
asked and present their answers by speaking (following
the procedure in Brennan, 1996). They were told to answer
in complete sentences. Feedback from the ‘‘dialog system’’
was provided as text messages. When the speaker made a
speaking error (for example, using an incomplete sentence
or abandoning an utterance), the system produced an

unplanned error message (e.g., ‘‘Complete sentences are nec-
essary for the database – please repeat’’). In other cases, the
system displayed a message in the form ‘‘You said:’’, fol-
lowed by a transcription of the participant’s utterance.
Sometimes, when the utterance was the site of a planned
error, the transcription would contain a ‘‘misrecognition’’
1–6 words long. This was done to localize the site of the
misrecognition within the utterance and the interaction.
By analyzing speech before, during, and after these misrec-
ognition sites, we hoped to discern the time course of hyp-
erarticulation adaptations. Table 1 shows example planned
and unplanned errors.

The planned errors were distributed throughout the dia-
log as follows: of the 66 total answer turns to be provided
by speakers, #1–24 were associated with only two planned
errors (an 8.3% error rate), utterances #25–47 with eight
planned errors (a 33% error rate), and utterances #48–66
with nine planned errors (a 50% error rate that began with
a highly salient run of five errors in a row, followed by a
run of five non-errors and then some alternation). To make
the recognition errors as realistic as possible, we had a
research assistant produce the answers to the questions
while talking to computer-based dictation software; the
planned error messages in the experiment were based on
the resulting misrecognitions.

We elicited spontaneous spoken sentences by having
speakers answer questions heard over a headset, pre-
recorded in a female voice (e.g., ‘‘Who is the catcher of
the softball team?’’). We made this modality distinction
between the questions (speech) and system responses (text)
because we wanted speakers to consider what they heard
over the headphones to be prompts that did not necessarily
originate from the system. This way, the recognition system
would not be assumed to be a partner with prior knowl-
edge of the discourse, and speakers would be less likely
to use pronouns and ellipses.

2.2. Materials and stimulus words

We identified categories of sounds that can be spoken
with both clear and relaxed forms and that would enable
us to quantify hyperarticulation. The first is mid-word /t/
before an unstressed vowel, as in water. In relaxed speech,

Table 1
Examples of planned and unplanned error/repair sequences (Q = Question; U = Uset’s answer; S = System’s feedback response)

Planned error Unplanned error

Q. What is Kate Tolstoy bringing to the food sale? Q. What is Ryan Dade bringing to the food sale?
U. Kate Tolstoy is bringing some cookie dough and a picnic table

to the food sale
U. Ryan Dade is bringing cat collars, and a basket, and pet toys to the food, to the

garage sale, oops
S. You said: Kate Tolstoy is bringing some cooking label in a pickle

to the food sale
S. Please repeat

U. Kate Tolstoy is bringing some cookie dough and a picnic table
to the food sale

U. Ryan Dade is bringing cat collars, a basket, and pet toys to the garage sale

S. You said: Kate Tolstoy is bringing some cookie dough and a
picnic table to the food sale
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a /t/ in this context is said as a ‘‘flap’’, which is short and
/d/-like, while in clear speech this would be a strong voice-
less [t]. The next is word-final /t/ (as in cat), which in
relaxed speech is produced without audible noise at the
end of the oral closure for the sound; a clear speech form
would have audible noise as oral pressure is released after
oral closure. The third /t/ variant is mid-word /t/ after n,
which may be absent in relaxed forms (as when winter
sounds much like winner), and clearly voiceless and
released in clear forms. As noted earlier, Levow (1999)
and Oviatt et al. (1998a,b) found consonant release and
unflapped /t/ to occur more frequently in corrections after
system misrecognitions. These same features have also been
reported in nonsense sentences when subjects are told to
speak more clearly, as for a hearing impaired or non-native
speaking partner (Picheny et al., 1986; Krause and Braida,
2004). The latter studies also report a higher occurrence of
full vowels in function words, as opposed to the reduced

vowel schwa. In our materials the indefinite article a
occurred very frequently, and could thus be examined for
changes in vowel quality. Finally, the d in the word and
may be unpronounced in a relaxed form of the word, or
audibly produced in a clear form of the word. Since a
highly frequent variant of this word is the relaxed form
with no /d/ (e.g., Bell et al., 2003 report that in the Switch-
board corpus, /d/ was articulated in and only 14% of the
time), presence of the /d/ was taken as a sign of clearer,
or hyperarticulated, speech.

We chose a set of target words containing several tokens
for each of these sound categories. The database provided
to experiment participants contained these target words
(see Table 2). One of the experimenters recorded a set of
66 prompting questions about this database; the questions
were worded to evoke answers in the form of target sen-
tences with phonetic environments roughly matched for
coarticulatory environment and stress (see Table 3).

Table 2
Database with target words

Child’s name Team position Mother’s job Father’s job Garage sale Food and kitchen items sale

Dawn Lepko catcher party planner bail bondsman a toy whale 30 cupcakes
a suitcase a set of coasters

Peter Lipton pitcher reporter scientist a lab coat tea cups
arrowheads and spear points a pear tart

Joy Wade first base tutor dog catcher a gold key chain & a teardrop charm peach pies
a Bad Boyz tape soup bowls

Sammy Dale second base teacher dentist 20 lotto tickets 40 oatmeal cookies
a chalk board beer mugs

Kate Tolstoy third base maid service
owner

car mechanic a talking doll some cookie dough
a hope chest a picnic table

Linda Adams shortstop potter ship captain pipe cleaners and beads a sixpack of Tab
boat poster a fat gram chart

Donna
Esposito

left field sales clerk truck driver a soapdish a chocolate cake
a peat spreader apple strudel

Mary Deed right field florist mail carrier trainer matching backpack and tote bag soy burgers
a golf bag an angel food cake

Lisa Evans center field ghost writer dance instructor a Santa outfit and boot polish soup
a hat box and a beard trimmer napkin rings

Ted Smith relief pitcher manager landscaper a dart game & a deer statue kale
a goose decoy & a beebee gun baby cups

Ryan Dade outfielder vetrinarian cat collars cake dish
a basket and pet toys pet food bowl

Martin McCoy umpire lawyer head coach starter skis & roller skates cutting board
a toy space suit coffee maker

Bob Carter infielder doctor ad man some kite string sugar cookies
float tubes and a red beach ball planter’s nuts

Marcella Asner designated hitter engineer plumber a hoop skirt hot dogs
tap shoes and a night light a spatula

Mark Pitney umpire talk show host life insurance
salesman

a large Yankees cap chocolate chip cookies
an umbrella

Deb Kanter substitute catcher flute teacher computer programmer a bait box and a spade a cooler
a bike pump a knife block

Joe Peck water and bat boy artist book publisher a laptop
a pencil and pad set

Speakers used a printed copy of this database to find information that they then used to spontaneously plan and produce sentences directed to the
simulated speech recognizer.
The database contained information about members of a children’s softball team, their parents’ occupations, and two upcoming fund raising events for the
softball team: a garage sale and a sale of food and kitchen items. The speakers were prompted by pre-recorded questions played through a headset. The
target words in each cell in the table are underlined.
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2.3. Subjects

Sixteen undergraduate students (nine women and seven
men, mean age approximately 22 years) from the State
University of New York at Stony Brook volunteered to
participate in the experiment and received either research
participation credit in one of their psychology courses or
$7. All were computer users with minimal or no experience
with speech recognizers. They were told that the purpose of
the experiment was to study speech recognition by comput-
ers. Two additional students experienced equipment failure
during their experimental sessions and their data were dis-
carded. All 16 speakers identified themselves as native
speakers of English; 10 were monolingual and the remain-
ing 6 were bilingual but English-dominant. In interviews
after the experiment, all speakers reported that they
believed that they had been speaking to a computer. They
were then debriefed about the need for simulation and told
that a research assistant had been providing the responses.

2.4. Procedure

After consenting to participate in the experiment, speak-
ers were fitted with a headphone microphone set and seated
before a computer display. The experimenter checked the
voice level from the microphone and explained that they
would be performing a data entry task. The experimenter
then had the speaker listen to the first question over the
headset, helped the speaker locate the answer on the paper
spreadsheet, and instructed the speaker to press a Speak
key and speak the answer in a complete sentence. When
the key was released, the screen displayed the status mes-
sage ‘‘Processing. . .’’, and a few seconds later, a text feed-
back message corresponding to what the system had
recognized appeared on the screen (the first utterance was
always recognized exactly as spoken). Saying ‘‘let’s try
another one’’, the experimenter had the speaker hit the
Ready key and then listen to and answer the next question.
On this second trial, the system displayed a message with
evidence of misrecognition. The experimenter reacted by
saying ‘‘oops, I guess it’s not perfect’’ and then demon-
strated how to repair the system’s error by having the
speaker press the Speak key and say the correct answer
again. After this, the experimenter asked if the speaker
had any questions; if there were any, the experimenter pro-
vided clarification and stayed in the room for a third trial.
After the speaker indicated that the task was understood,
the experimenter mentioned that there would be 66 ques-
tions in all, and left the room.

In order to enable the ‘system’ operator to provide feed-
back responses that were tailored to the speakers’ answers
in a realistic way (within a few seconds), we used a config-
uration in which a research assistant in another room mon-
itored the speaker’s utterance (e.g., ‘‘The team’s catcher is
Dawn Lepko’’) and operated a control panel to select a
feedback response from a menu of pre-stored sentences
for the prompt (e.g., ‘‘You said: ‘The team’s catcher is

Table 3
Pre-recorded question prompts

Question Question text

1 Who are Kate Tolstoy’s parents?
2 What is Mary Deed bringing to the food sale?
3 Who is the scientist’s son?
4 What is Deb Kanter bringing to the kitchen item’s sale?
5 What is Donna Esposito bringing to the garage sale?
6 Who are Joy Wade’s parents?
7 What is Ryan Dade bringing to the food sale?
8 Who is Deb Kanter’s mother?
9 What is Lisa Evans bringing to the food sale?
10 Who are Dawn Lepko’s parents?
11 What is Ted Smith bringing to the garage sale?
12 What is Sammy Dale bringing to the food sale?
13 Who is Lisa Evans’ mother?
14 What is Martin McCoy bringing to the food sale?
15 Who is Donna Esposito’s father?
16 What is Bob Carter bringing to the food sale?
17 What position does Joe Peck play?
18 What is Linda Adams bringing to the garage sale?
19 Who is Ted Smith’s mother?
20 Who are Joe Peck’s parents?
21 What is Donna Esposito bringing to the food sale?
22 What is Dawn Lepko bringing to the garage sale?
23 Who are Sammy Dale’s parents?
24 What is Dawn Lepko bringing to the food sale?
25 Who is Martin McCoy’s father?
26 What is Joy Wade bringing to the food sale?
27 Who plays right field?
28 What is Lisa Evans bringing to the garage sale?
29 Who is the relief pitcher?
30 What is Marcella Asner bringing to the food sale?
31 Who plays second base?
32 What is Linda Adams bringing to the food sale?
33 What is Ryan Dade bringing to the garage sale?
34 Who is the infielder?
35 What is Mark Pitney bringing to the food sale?
36 Who are Mary Deed’s parents?
37 What is Ted Smith bringing to the food sale?
38 What position does Lisa Evans play?
39 Who plays third base?
40 Who is Peter Lipton’s mother?
41 What is Sammy Dale bringing to the garage sale?
42 Who plays outfield?
43 What is Kate Tolstoy bringing to the food sale?
44 Who is the softball team’s umpire?
45 What is Deb Kanter bringing to the garage sale?
46 Whose father is a dance instructor?
47 What is Martin McCoy bringing to the garage sale?
48 What is Mary Deed bringing to the garage sale?
49 Who plays left field?
50 What is Peter Lipton bringing to the food sale?
51 What is Kate Tolstoy bringing to the garage sale?
52 Who are Linda Adams’ parents?
53 What is Bob Carter bringing to the garage sale?
54 Who are Marcella Asner’s parents?
55 What is Mark Pitney bringing to the garage sale?
56 Who plays shortstop?
57 Who plays first base?
58 What is Peter Lipton bringing to the garage sale?
59 Who is Mark Pitney’s father?
60 What is Joy Wade bringing to the garage sale?
61 What is Marcella Asner bringing to the garage sale?
62 What is Joe Peck bringing to the garage sale?
63 Who is not bringing anything to the food sale?
64 Who is the softball team’s catcher?
65 Who is the substitute catcher?
66 Who are Bob Carter’s parents?
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Dawn Lepko’’’). The pre-stored feedback messages
included a set of variants on the expected answer to each
question in the task so that the operator would be able
to respond as quickly as possible (we obtained these vari-
ants by piloting and adding new variants as they were pro-
duced); for a sample set, see Table 4. Whenever speakers
departed from this expected set, the operator would select
the closest match and edit it to reflect exactly what the
speaker had said, apart from any stuttering or disfluencies
such as ‘‘um’’. If the speaker restarted an utterance, stut-
tered more than once or produced a major disfluency, the
operator responded with ‘‘Please repeat.’’ As in the second
practice trial, at the planned error points the operator sent
feedback with evidence of misrecognition to the speaker’s
screen. The operator’s control panel is shown in Fig. 1.

During the experimental session, the operator of the
Wizard-of-Oz program sent text messages back to the
speaker rapidly after each utterance (average response
time: 3.6 s; range of response times: .02–40.5 s with all
but 100 being under 10 s). The Wizard-of-Oz system logged
the filenames for recorded utterances and the feedback
messages. After each session, the feedback messages were
hand-corrected by a research assistant to produce a true
transcript of the speaker’s utterances. The transcripts
enabled us to identify cut off utterances, to identify when
the speaker re-worded the previous utterance as opposed
to repeating it verbatim, and later, to compare speech rec-
ognition output to what the speaker had originally said.

2.5. The corpus

The experiment was designed to provide a corpus of at
least 1360 planned utterances (16 speakers · 66 answers +
19 planned repairs). Speakers varied in the numbers of
unplanned error messages they received (from 1 to 25, with
a mean of around 6); due to the ensuing repairs, the total
corpus comprised 1512 utterances. Utterances containing
a major disfluency (other than minor stuttering, pausing,
um or uh) were removed from the corpus, as were those
cut off due to speakers depressing the press-to-speak key
late or releasing it too early, and those whose speaking
rates represented extreme outliers (outliers represented
fewer than 2%). This resulted in a corpus of 1202 analyz-
able utterances. Of these, 373 were planned repairs, each
paired with a preceding utterance. The analyzable utter-
ances averaged 3.9 s in length.

Table 4
Sample variants on the expected spontaneous answer to a question
prompt, Who is the catcher of the softball team? Speakers were instructed
to answer in complete sentences

The catcher is Dawn Lepko
The team’s catcher is Dawn Lepko
The softball team’s catcher is Dawn Lepko
Dawn Lepko is the catcher
Dawn Lepko is the team’s catcher
Dawn Lepko is the softball team’s catcher
Dawn Lepko is the catcher of the softball team

The control panel (see Fig. 1) enabled the operator to select the text that
exactly matched the speaker’s utterance, or else to rapidly edit one variant
to make it match. A text message was then generated and sent to the
speaker’s screen (e.g., ‘‘You said: Dawn Lepko is the catcher.’’).

Fig. 1. Screen shot of the Wizard-of-Oz (simulation) control panel.
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2.6. Coding and data analyses

Two main sets of measures were made on this corpus to
characterize speakers’ adaptations to evidence of misrecog-
nition. First, utterance lengths were computed from the
recorded audio for each utterance. The number of words
in each utterance was automatically converted to a number
of syllables using a list of the words in the corpus and their
lengths in syllables, and then rate of speaking in syllables
per second was calculated for each utterance. Then, a sec-
ond set of analyses was done on the ‘‘before’’ and ‘‘after’’
tokens of the utterances that were associated with planned
errors. These utterances had been designed to include spe-
cific target words that contained one or more of the five
phonetic segments that we expected would be produced
in hyperarticulate form during repairs (/t/ tapping, word-
final /t/ release, /t/ release after /n/, the full vowel in indef-
inite articles, and /d/ in and).

Phonetically trained transcribers evaluated the target
words in the utterances before and after the planned error
messages to determine whether word-medial and word-
final segments were either flapped or released and whether
indefinite articles contained full vowels. On this basis, the
target words were classified as either relaxed or clear e.g.,
if the word lotto contained a medial flap, then it was clas-
sified as relaxed; if its medial [t] was released, it was classi-
fied as clear.

For each utterance in the corpus, we then computed the
distance in number of utterances from the last error
(planned or unplanned). So that we could examine whether
hyperarticulation within an utterance would be global
(affecting the entire utterance) or focal (focused on the
‘misrecognized’ part of the utterance), the segmental fea-
tures of interest were also coded as to whether they
appeared before, during, or after the ‘misrecognized’ part
of the utterance.

We conducted both local analyses of hyperarticulation
(within the utterance) and global analyses (across a series
of utterances). For local analyses, we used ANOVAs to
compare speaking rates (in syllables per second) and per-
centages of target words that were pronounced in clear
(vs. relaxed) form for paired utterances just before or after
an error message. We conducted two kinds of global anal-
yses using all the utterances (including those that did not
evoke error messages). First, we examined the effects of
the recency of the last error message on speaking rate, to
chart the decay of hyperarticulation. Second, because the
overall rates of planned errors differed across the thirds
of the dialog, we looked for an impact of higher vs. lower
simulated misrecognition rates on hyperarticulation.
Whenever possible, two ANOVAs are presented for each
analysis, as we wish to generalize both to the behavior of
the average speaker and to the effects on the average utter-
ance or the average word. F1 collapses the data by-subjects
(speakers) and F2, by-items (items are utterances, unless
otherwise noted). To examine relationships among paired
variables of interest such as speaking rate, clear speech,

and speech recognizer word error rates, correlation coeffi-
cients were computed for each of the 16 speakers and trans-
formed into Fischer’s Zr scores so that they could be
averaged and tested for significance. The Zr scores were
then transformed back into correlations for reporting
purposes.

2.7. Speech recognition testing

Although our primary focus was how hyperarticulation
is adapted in response to cues of misrecognition (both
within the utterance and across utterance sequences), we
also looked at the impact of hyperarticulation on speech
recognition performance. This problem has been previ-
ously studied (e.g., Wade et al., 1992; Hirschberg et al.,
1999; Soltau and Waibel, 1998, 2000a,b), but usually in
the context of speech recognizers using statistical language
models rather than grammar-based speech recognizers.
Also, previous researchers did not have access to the
detailed segmental annotations created for this corpus, so
could not examine the impact on speech recognition of seg-
mental adaptations. Accordingly, after the experimental
sessions were completed, the resulting corpus was pro-
cessed off-line.

Our corpus is a corpus of conversational speech directed
to the computer, but most data used for training speech
recognizers is either read speech (e.g., the HUB4 corpus
of broadcast news speech) or conversational speech direc-
ted to human partners (e.g., the HUB5 corpus, which
includes parts of the Switchboard and CALLHOME cor-
pora1). There is one large corpus of conversational speech
directed at computers that has been used to train acoustic
models: the CMU Communicator corpus (Bennett
and Rudnicky, 2002). In addition, commercial speech rec-
ognizers may train on proprietary corpora of read or con-
versational speech. We processed our speech through
five speech recognition systems, incorporating two
approaches to language modeling and three different
acoustic models:

(1) Sphinx-word list: A version of the Sphinx 3 statistical
speech recognizer (available from http://cmu-
sphinx.sourceforge.net/) with a language model con-
sisting of a simple word list language model from
our corpus, similar to the ‘nogram’ model of (Wade
et al., 1992). We processed our corpus through this
speech recognizer using two acoustic models: one
trained on HUB4, and one on CMU Communicator.

(2) Sphinx-unigram: A version of Sphinx 3, with a uni-
gram language model trained over our corpus. Again,
we processed our corpus through this speech recog-
nizer using acoustic models trained on HUB4 and
CMU Communicator.

1 These corpora are available from http://www.ldc.upenn.edu/.
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(3) Sphinx-bigram: A version of Sphinx 3, with a bigram
language model trained over our corpus and acoustic
models trained on HUB4 and CMU Communicator.

(4) Sphinx-trigram: A version of Sphinx 3, with a trigram
language model trained over our corpus and acoustic
models trained on HUB4 and CMU Communicator.

(5) Grammar-based: A state-of-the-art speaker-indepen-
dent commercial speech recognizer, with an acoustic
model trained on a proprietary corpus of conversa-
tional and read speech. For a language model, we cre-
ated a recognition grammar tailored to our corpus.
Grammar-based language modeling has been shown
to give a lower word error rate and comparable
semantic error rate to statistical n-gram language
modeling on unconstrained, in-domain utterances
for spoken dialog (Knight et al., 2001).

Because our corpus is relatively small, we did no tuning
of the acoustic models to our speakers or data. The recog-
nition data from these systems were used to examine the
extent to which hyperarticulation affects speech recogni-
tion. These data should not be interpreted as measures of
the performance of the speech recognizers we used: our
only goal was to compare measures of recognition errors
for hyperarticulate and non-hyperarticulate speech.

3. Results and discussion

3.1. Relationship between main hyperarticulation measures

Our two main sets of measures of hyperarticulation,
speaking rate and phonetically clear speech, were moder-
ately but reliably (and negatively) correlated; that is, the
more slowly an utterance was spoken, the higher propor-
tion of clear segmental forms it contained. The average
correlation of speaking rate and proportion of clear speech
for the 16 speakers was rZ = !.239, p < .001. Correlations
of speaking rate and clear speech for individual speakers
ranged from r = +.08 (no relationship) to !.640 (a large
effect size, according to Cohen, 1988), demonstrating sub-
stantial variability among individuals. Details and discus-
sion of individual differences are provided in Section 3.4.

3.2. Local effects of evidence of misrecognition on speaking

3.2.1. Local effects of error messages on hyperarticulation
As we expected, when speakers saw an error message

indicating the system had misrecognized an utterance, they
adapted speaking during the subsequent repair. This was
true for both speaking rate and pronunciation. Speakers
produced more segmentally clear forms in the utterance
just after an error message than in the utterance before,
38% compared to 30%, F1(1, 15) = 17.42, p = .001; F2

2(1,

27) = 35.46, p < .001. They also spoke more slowly after
receiving a planned error message than before, 3.62 sylla-
bles/s compared to 4.12 syllables/s, F1(1,15) = 49.23,
p = <.001; F2(1, 38) = 14.14, p = .001. The same pattern
held when matched pairs of utterances before and after
unplanned errors were added to the analysis (such messages
included requests for the speaker to repeat due to disfluen-
cy, pronouns, ellipsis, or otherwise incomplete sentences);
for all matched pairs of utterances taken together, repairs
(after versions) were slower than before versions, 3.67 com-
pared to 4.17 syllables/s, F1(1,15) = 30.64, p < .001.3

Of the five kinds of segmental variation coded in the
paired utterances, three were more likely to be pronounced
in their clear forms in the after version than the before
version: mid-word /t/ vs. flap /D/, word-final /t/ release
vs. non-release, and presence of /t/ release after /n/ vs.
absence. The vowel quality of the indefinite article a and
the presence of /d/ in and did not show this pattern of
clearer speech after errors (see Table 5, last column). There
were not sufficient numbers of observations distributed
evenly enough across speakers for a significance test to be
done for each of these five segmental features. However,
the pattern suggests that hyperarticulation may work dif-
ferently for content words than for function words. Note
that the first three clear speech features occurred only in
content words within our data set (mid-word /t/, word-
final /t/ release, and /t/ release after /n/), whereas the last
two occurred only in function words (/d/ release in and,
and the full vowel in the indefinite article). When we com-
pared the clear speech features occurring in content words
to those in function words (the first three vs. the last two in
Table 5), we found that content words were produced in
their clear forms 13% more often in a repair than in the
preceding utterance, while function words were produced
in their clear forms only 4% more often, different at F1(1,
15) = 13.32, p = .002; F2

4(1,13) = 15.66, p = .002.
We offer three (non-competing) explanations for this

finding. The first, a communication account, holds that,
to the extent that the point of clear speech is to repair a
particular troublesome message, speakers should be more
likely to use the clear phonological form while repairing
a content word than a function word, because content
words are usually more critical for understanding the mes-
sage (see, e.g., Ferreira et al., 2002).5 The second, an ease-
of-production account, suggests that it may be somewhat
taxing to articulate several consecutive words in their clear
forms (such as a determiner or coordinating word followed
immediately by a noun) and so a or and produced in the

2 Here, F2 is collapsed by words rather than by utterances, as clear and
relaxed forms vary across words.

3 F2, the ANOVA collapsed across items cannot be calculated here, as
many of the unplanned items generated few or no error messages.
4 Here, F2 is collapsed by utterances because a given word can be either a

content or a function word, not both (so an analysis collapsed by words is
not useful). The second degree of freedom for F2 is low due to missing data
for some of the planned error utterances.
5 We expect that in a situation in which speakers need to make a

meaningful contrast between function words, these words would be
hyperarticulated (and contrastively stressed) as well.
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vicinity of a hyperarticulated content word should tend to
relax. The third account is that clear forms should be more
likely to be associated with contrastive stress or a pitch
accent, and since this is rare for function words, such words
are less likely to be hyperarticulated. Future corpora
designed with these possibilities in mind may be able to dis-
tinguish among these accounts.

Although target utterances in our study were not
designed to elicit clear speech in vowels other than the
indefinite article a, each speaker produced enough tokens
(1–3) of ee (as in deed), eh (as in peck) and ay (as in Dade)
to support a post hoc look at the acoustic properties of
vowels in before and after error matched pairs of target
words. For these items, we measured the frequencies of
the lowest two resonances of the vowels (formants), which
roughly represent how front (formant 2) and how low (for-
mant 1) the vowels are produced in the mouth. Figs. 2a and
2b plot frequencies for these two formants at vowel mid-
point for two speakers who demonstrated the most com-
mon patterns observed.6 Consistent with previous work
(Johnson et al., 1993; Bradlow, 2002), the vowel ee as in
deed was fronter (higher formant two) in repaired forms
(for 75% of speakers). Repaired forms of deed were also
usually lower (higher formant one) in the vowel space
(44%). The vowel eh as in peck was usually fronted (67%
of the time), also consistent with (Johnson et al., 1993)
and was most often somewhat raised in the vowel space
(50% of the time). We could not systematically summarize
changes in the ay phoneme (as in Dade) across all speakers,
since ay is monophthongal for some speakers and diph-
thongal for others; however, for the two speakers repre-
sented in Figs. 2a and 2b, ay was monophthongal, and
turned out to be slightly fronter and higher in repaired
forms. The overall pattern, then, was for front vowels in
repaired target words to become even more fronted (i.e.,
more peripheral) than they were in their pre-repair forms.

3.2.2. Local hyperarticulation within utterances
How targeted is hyperarticulation? Is it aimed at repair-

ing the most troublesome portion of an utterance? Since

our experimental design elicited utterances that consisted
of relatively long sentences (up to 26 words long, median
length 11 words), we were able to examine the time course
of hyperarticulation within an utterance. Recall that our
error messages included both correct and incorrect words
from the speaker’s prior utterance (e.g., You said ‘‘Kate

200

400

600

800

1000

1500200025003000
Formant 2 in Hz

Fo
rm

an
t 1

 in
 H

z

Before
Afteree

ay

eh

Fig. 2a. Formant values for ee, ay and eh before and after an error, first
subject.
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Fig. 2b. Formant values for ee, ay, and eh before and after an error,
second subject.

Table 5
Proportions of clear forms for the phonetic segments of interest, before and after evidence of misrecognition

Segment Number of tokens
in corpus

Proportion of clear
forms before error

Proportion of clear forms
after error (during repair)

Difference
(after ! before)

Word-final released /t/ 238 0.2343 0.3697 0.1345
Mid-word /t/ vs. flap /d/ 76 0.0026 0.1316 0.1053
/t/ after /n/ 43 0.6977 0.8605 0.1628
Full vowel in def. article a 306 0.3954 0.4314 0.0036
/d/ in and 232 0.2716 0.3147 0.0043

Total/mean 897 0.3032 0.3795 0.0076

The positive difference in the last column indicates the proportion of times that segment was pronounced more clearly during a repair than before the
repair.

6 Sample utterances from these two speakers can be found at http://
www.cs.sunysb.edu/~adaptation/hyperarticulation.html.
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Tolstoy is bringing a tackle dog and hopscotch’’ when the
speaker had said ‘‘Kate Tolstoy is bringing a talking doll
and a hope chest’’). Each target word coded for segmental
form was categorized as to whether it occurred before, dur-
ing, or after the part indicated as misrecognized in the error
message. We then analyzed the relative percentages of hyp-
erarticulation (the percentage increase in relaxed vs. clear
forms from the original utterance to its repair) across these
three locations in the utterance.

Consistent with Oviatt et al.’s findings (1998a,b), we
found that hyperarticulation has a locally targeted compo-
nent; that is, during the repair speakers are more likely to
modify the part of the utterance that was apparently mis-
understood than the other parts. The percentage of clear
forms increased 12.6% for the misunderstood portion of
the repaired utterance over the ‘‘before’’ version, signifi-
cantly greater than the increase of only 4.3% for words pre-
ceding the misunderstood portion of the repaired utterance
(F1(1, 15) = 8.41, p = .01; F2(1, 2) = 68.97, p = .01) and
marginally so for the increase of only 4.7% for words
following the misunderstood portion (F1(1, 15) = 6.72,
p = .02; F2(1, 2) = 2.65, ns). This pattern emerged as a qua-
dratic trend, F1(1, 15) = 8.48, p = .01; F2(1, 2) = 6.52,
p = .125,7 and is illustrated in Fig. 3.8

3.3. Global effects of misrecognition upon speaking

3.3.1. Decay of hyperarticulation
As a style of speaking, does hyperarticulation persist, or

end abruptly once there is evidence that an utterance has
been understood (like a switch), or decay gradually (like
a dial)? Since the error messages in our experiment were
staged in advance and occurred at the same points in the
dialog for all speakers (as opposed to occurring randomly
as in Oviatt et al., 1998b and Soltau and Waibel, 1998),
we were able to systematically analyze the effect of error
messages upon hyperarticulation across utterances. For
each utterance in our corpus, we calculated how recently
the speaker had experienced an error message (ranging
from the immediately preceding turn in the case of a repair,
to a maximum of 16 turns previously). This analysis
included not only planned error messages, but also
unplanned ones. We found that the closer (in turns) an
utterance was to the most recent previous error message,
the more it was hyperarticulated – that is, the slower its
rate of speech, rZ = .224, p < .001 and the more likely
any target words were to contain clear segmental forms,
rZ = !.147, p < .005. This demonstrates that hyperarticu-

lation is not only a focal phenomenon, but also global, in
that it decays gradually after a repair. Fig. 4 illustrates that
speakers returned to relaxed speech gradually after experi-
encing evidence of misrecognition (note: utterances one
utterance away from an error message are repairs).

3.3.2. Effect of error rates
Finally, we looked at the global effect of error rates on

hyperarticulation. Oviatt et al. (1998b) found significant
slowing of speaking rate (by about 49 ms/syllable) when
speakers experienced more (20%) vs. fewer (6.5%) errors.
Recall that the design of our study split the dialog sessions
into three parts, each with distinct rates of staged error
messages, as follows: of the 66 total utterances, the first
24 were associated with only two planned errors (an 8.3%
error rate), utterances #25–48 were associated with eight
planned errors (a 33% error rate), and utterances #49–66
were associated with nine planned errors (a 52.9% error
rate that included a highly salient run of five errors in a
row). As expected, mean speaking rate slowed as a function
of higher error rate; speakers produced 4.53 syllables/s.
during the part of the dialog with an 8.3% error rate vs.
4.08 during the part with a 33.3% error rate, F(1,
14) = 13.35, p = .003. This amounted to a slowing of about
24 ms/syllable. There was no further slowing from the mid-
dle part to the last part of the dialog, during which the
error rate was extremely high, F(1, 14) = .06, n.s.

3.4. Individual differences

Individual speakers displayed substantial variability in
average speaking rate, ranging from 2.43 to 5.27 sylla-
bles/s. All speakers slowed their speaking rate during
repairs, relative to matched utterances before repairs; the
extent to which they did so ranged from .04 to 1.33 sylla-
bles/s. Variability in individual rates of speaking may have
increased due to a few speakers adopting a globally hyper-
articulate style of speaking throughout the experiment;
those who experienced the highest error rates (due to
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Fig. 3. Local hyperarticulation. Proportion of phonetically clear speech
forms before, during, and after the apparently misunderstood portion of
utterances produced before error messages and afterward (as repairs).

7 The second ANOVA (by-items) was marginal; power was limited
because only three utterances contributed to the analysis (i.e., contained
target words that occurred before, during, and after the trouble area).
8 This finding also suggests a possible fourth explanation for the

difference in clear speech between content and function words; in the
sample of utterances that resulted from our design, content words were
more likely to be indicated as misrecognized in the error messages and
function words were more likely to precede or follow them.
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receiving an abundance of unplanned error messages in
response to producing pronouns, ellipsis, disfluencies,
etc.) spoke the most slowly during utterances that were
not repairs (marginal at r = !.443, p < .09).

All but three speakers produced more clear speech dur-
ing repairs than before repairs. Speaking rate and phono-
logical form were correlated not only within utterances
by individual speakers (Section 3.1) but also across speak-
ers; that is, speakers who spoke characteristically fast
(averaged over the whole dialog) tended to produce more
relaxed forms and those who spoke characteristically
slowly tended to produce more clear forms, r = !.760,
p < .001.

Recall that our speakers comprised 10 monolingual
native speakers of American English and six bilinguals.
Both monolingual and bilingual speakers slowed their
speaking rate equally during repairs F1(1,15) = .313, n.s.,
and there was no difference in average speaking rates of
monolinguals vs. bilinguals, F1(1,14) = 357, n.s. However,
during repairs, monolinguals increased their proportion of
segmentally clear forms marginally more than did biling-
uals, F1(1, 14) = 4.32, p = .057. It has been hypothesized
that speakers represent phonetic targets in a hyperarticu-
late form (see Johnson et al.’s, 1993 proposal and Whalen
et al., 2004 for the controversy surrounding this proposal).
If this is true, it may be that monolingual native speakers
represent phonetic targets as more hyperarticulate proto-
types than do bilingual speakers of English, or else monol-
inguals may manage to approach these targets more closely
during hyperarticulation.

3.5. Speech recognition performance

The corpus of utterances was processed through the
Sphinx 3 speech recognizer, with two acoustic models,
trained on (a) broadcast speech (HUB4) and (b) conversa-
tional speech (CMU Communicator), each configured with

four different language models (word list, unigram, bigram,
and trigram). We computed by-subjects and by-items
ANOVAs with Training · Language Model as factors,
both for overall word error rate (WER) and for word error
rate with a before and after error message factor. Mean
word error rates are reported in Table 6.

There was a strong and consistent pattern, with higher
word error rates by every recognizer for ‘‘before’’ utter-
ances than for ‘‘after’’ (repair) utterances, F1(1, 15) =
12.81, p = .003; F2(1, 47) = 14.89, p < .001. This pattern
flies in the face of the expectation that hyperarticulate
speech always harms automatic recognition performance;
for our corpus, the repairs (with their slower speaking rates
and clearer pronunciations) were associated with improved
performance for all the Sphinx-based recognizers. In con-
trast, Wade et al. (1992) found in their study that hyperar-
ticulation did adversely affect the performance of a speech
recognizer whose model was trained on in-domain conver-
sational speech.

The acoustic model training data made a difference as
well. Over the entire corpus of utterances, recognizers
trained on HUB4 performed better than those trained on
CMU Communicator, F1(1, 15) = 115.75, p < .001; F2(1,
65) = 143.40, p < .001. The difference in word error rates
for HUB4- vs. Communicator-trained recognizers was
19.18 for Word list models, 21.2 for unigram, 13.87 for
bigram, but only .12 for trigram, yielding a Training
Set · Language Model interaction, F1(1, 15) = 196.36,
p < .001; F2(1, 65) = 25.09, p < .001. It is not so surprising
that the recognizer trained on HUB4 out-performed the
one trained on CMU Communicator, as the latter corpus
was smaller. Moreover, the HUB4 corpus is a corpus of
broadcast speech, which typically contains an overabun-
dance of pitch accents and is actually sometimes segmen-
tally similar to hyperarticulate speech.

The pattern of ASR mean errors in Table 6 (deletions,
insertions, and substitutions) shows that before and after
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Fig. 4. Global hyperarticulation. Speaking rates during and after repairs, as a function of number of utterances since the last error message (the utterances
that are 1 utterance away from an error message are repairs).
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error differences in recognition rates were due to primarily
to fewer words being deleted from repair utterances than
from ‘‘before’’ utterances. This is a consistent pattern
across all of the recognizers. For all the Sphinx-based rec-
ognizers, deletions and substitutions were more common
than insertions.

For the grammar-based recognizer, the mean word error
rate was 11.17%, with no difference in word error rate for
utterances before and after error messages, t1(15) = .72,
ns; t2(16) = .53, ns. However, better speech recognition per-
formance (proportion of words correctly recognized) was
correlated with slower speech, rZ = !.179. And better rec-
ognition was weakly correlated with higher proportions of
clear speech, rZ = .092 (for individual speakers, this ranged
from r = !.316 to r = +.615). So some features of hyperar-
ticulation appear to help recognition performance for this
grammar-based recognizer as well. The only other studies
of hyperarticulation to use a grammar-based speech recog-
nizer were Hirschberg et al. (2004) and Litman et al. (2006);
those studies did not find a significant correlation between
speaking rate and speech recognizer performance. How-
ever, those data may not be easy to compare to ours, as
they involved telephone speech recorded from actual
human–computer dialog (rather than a Wizard-of-Oz
simulation), and so included more cascading errors (and
neither study examined any effects of segmentally clear
speech).

4. Conclusions

In this paper, we described the results of an experiment
designed to investigate the impact of different components
of hyperarticulation in computer-directed speech. Our
design enabled us to collect a corpus of spontaneous utter-
ances (a) of varied length, (b) with comparable utterances
from multiple speakers, (c) some of which were repetitions

in response to planned error messages, yielding lexically
identical pairs for within utterance comparison, (d) with
locations of errors parameterized for both within target
utterances and across a span of utterances, and (e) with
multiple tokens of target words to support comparisons
of segmental adaptation. With these characteristics com-
bined in a single design, our findings extend those of previ-
ous hyperarticulation studies.

Our findings support two major conclusions. First, hyp-
erarticulation is a somewhat targeted adjustment involving
both slowed speaking rates and clearer phonetic segments;
this adjustment varies both locally (within an repair utter-
ance) and globally (decaying across the span of a dialog).
Second, hyperarticulation in speaking to computers is not
as maladaptive as previously thought.

We report these new results:

• Hyperarticulation is a ‘dial’, rather than a ‘switch’:
– Speakers return to their pre-error speaking style by 4–

7 utterances after evidence of misrecognition.
– Speakers hyperarticulate more in high-error parts of

a dialog than in low-error parts, as well as in high-
error parts of an utterance.

• After misrecognition, content words are more likely to
be pronounced in their clear forms than function words.

• Monolingual and bilingual speakers alike adjust their
speaking rate after evidence of misrecognition. How-
ever, monolingual speakers produce marginally more
clear forms during repairs than do bilingual speakers.

We also replicate several previous results:

• Speakers speak more slowly and produce more segmen-
tally clear forms after evidence of misrecognition
(Levow, 1999; Oviatt et al., 1998a,b; Shriberg et al.,
1992; Wade et al., 1992).

Table 6
Recognition performance (word error rate) by Sphinx-based speech recognizers trained on broadcast speech (HUB4) and conversational speech (CMU
Communicator) for all utterances, ‘‘before’’ utterances only, and ‘‘after’’ utterances only

HUB4 Comm

Word list Unigram Bigram Trigram Word list Unigram Bigram Trigram

All utterances (N = 1405)
WER 0.5745 0.3558 0.2527 0.0625 0.7663 0.567 0.3914 0.0637
Deleted 2.95 1.42 0.62 0.13 4.65 3.16 0.81 0.14
Inserted 0.06 0.26 0.48 0.2 0.01 0.08 0.55 0.16
Substituted 3.37 2.12 1.46 0.26 3.93 3.14 2.79 0.36

‘‘Before’’ utterances (matched to repairs; N = 387)
WER 0.5702 0.3591 0.2727 0.0929 0.7716 0.5533 0.4214 0.1009
Deleted 3.03 1.49 0.7 0.19 4.82 3.17 0.92 0.18
Inserted 0.05 0.23 0.47 0.21 0.01 0.1 0.5 0.24
Substituted 3.49 2.18 1.57 0.38 4.15 3.15 3.03 0.52

‘‘After’’ Utterances (repairs; N = 387)
WER 0.5483 0.3316 0.2448 0.0739 0.745 0.5195 0.3723 0.0775
Deleted 2.9 1.32 0.66 0.17 4.6 3.01 0.84 0.16
Inserted 0.05 0.24 0.52 0.25 0.02 0.12 0.6 0.18
Substituted 3.64 2.15 1.31 0.25 4.31 3.15 2.64 0.38
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• In repairs, speakers are more likely to clearly pronounce
the words that appeared to have been misrecognized
than other words before or after these trouble spots in
the same utterance (Oviatt et al., 1998b).

• There is considerable variation in individual speaking
style to a (simulated) speech recognizer (Shriberg
et al., 1992; Hirschberg et al., 2004). A minority of
speakers produce segmentally clear speech in all interac-
tion with a computer system; the majority, however, use
relaxed forms in the absence of evidence of misrecogni-
tion. Speaking rate, a prosodic feature, is a more univer-
sal feature of hyperarticulation.

Although our corpus was not collected from interactions
with an actual dialog system, we replicated significant
aspects of typical dialog system interaction (the nature of
system feedback, the distribution of misrecognition errors,
the need for the user to correct errors by repeating the
entire original utterance) while ensuring that our corpus
was collected under controlled conditions so that we were
able to perform a quantitative analysis of changes in hyp-
erarticulation over successive turns. In an actual interac-
tion with a dialog system, the system behavior might
vary. However, the behavior we studied in this experiment
was that of the human user in conversation with a com-
puter. What we have learned about the nature of hyperar-
ticulation, then, is expected to apply in any in any situation
where users face patterns of misrecognition errors.

Our results do, however, provide some insights for
designers of dialog system behaviors. When users of a
spoken dialog system experience misrecognition, they alter
their behavior in two ways: they may start to hyperarticu-
late, and they may rephrase, sometimes to out-of-grammar
utterances (Wade et al., 1992; Kirchhoff, 2001; Batliner
et al., 2003; Choularton and Dale, 2004; Bohus and Rudn-
icky, 2005; Bulyko et al., 2005; Gieselmann, 2006; Litman
et al., 2006). Our results, taken in light of the previous lit-
erature, suggest that approaches to preventing or handling
maladaptive rephrasing (e.g., as suggested by Hockey et al.,
2003; Litman et al., 2006) may have more impact on dialog
outcomes than simply encouraging users to ‘‘speak
naturally’’.

These results serve the broader goals of characterizing
how speakers adapt to their addresses, and of handling var-
iation in input to spoken dialog systems (http://www.
cs.sunysb.edu/~adaptation/). An improved understanding
of the nature and causes of variation in language use in
human–human and human–computer dialog will, we pre-
dict, lead to more natural and more powerful interaction
with spoken dialog systems.
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