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ABSTRACT 

Expertise in computer programming can often be 
difficult to transfer verbally. Moreover, technical training and 
communication occur more and more between people who are 
located at a distance.  We tested the hypothesis that seeing one 
person's visual focus of attention (represented as an eyegaze 
cursor) while debugging software (displayed as text on a screen) 
can be helpful to another person doing the same task. In an 
experiment, a group of professional programmers searched for 
bugs in small Java programs while wearing an unobtrusive head-
mounted eye tracker.  Later, a second set of programmers 
searched for bugs in the same programs. For half of the bugs, the 
second set of programmers first viewed a recording of an eyegaze 
cursor from one of the first programmers displayed over the 
(indistinct) screen of code, and for the other half they did not.  
The second set of programmers found the bugs more quickly after 
viewing the eye gaze of the first programmers, suggesting that 
another person's eye gaze, produced instrumentally (as opposed to 
intentionally, like pointing with a mouse), can be a useful cue in 
problem solving. This finding supports the potential of eye gaze 
as a valuable cue for collaborative interaction in a visuo-spatial 
task conducted at a distance.  

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation]:  Group and 
Organization Interfaces - collaborative computing asynchronous 
interaction, synchronous interaction, computer-supported 
cooperative work. H.4.3 [Information Interfaces and 
Presentation]:  Communications Applications - 
videoconferencing. 

General Terms 
Human Factors, Experimentation. 

Keywords 
Eye tracking, visual co-presence, mediated communication, gaze-
based & attentional interfaces, programming, debugging. 

 

1. INTRODUCTION 
       Achieving a joint focus of attention is critical for successful 
communication and collaboration.  While speaking, people 
provide many cues about their focus  of  attention  with the 
syntactic and lexical choices they make, as well as with 
intonation; such information can be represented in a context 
model that enables addressees to interpret referring expressions 
that might otherwise be ambiguous (see, e.g., [5] [12] [13]).  For a 
physical task, particularly one with a visuo-spatial component, 
being able to see what a partner is doing makes communication 
much more efficient than not seeing such information ([3] [4] [6] 
[8] [22]). When collaborators communicate at a distance, the most 
useful kind of visual information appears to be a shared task 
artifact; studies of video conferencing have shown that being able 
to view a document that a conversational partner is looking at 
during a joint task is more useful than being able to see the 
partner's face ([25] [27] [34] [35]). 

Unfortunately, when people collaborate remotely 
(whether at different places or different times), it can be difficult 
for them to become aware of one another's focus of attention [7].  
A number of technologies have been invented to support joint 
activity and awareness; for instance, GroupWeb [15] slaves web 
browsers together so that when one is scrolled, the other follows, 
and Piazza [19] enables people to see (and contact) others who 
are visiting the same web site at the same time.  Other systems 
enable experts to visualize and control novices' workstations 
remotely, in order for the experts to help debug problems; these 
are more effective than telephone help alone.  Some of these 
systems display where a partner's input cursor is, enabling deixis 
(referring by pointing). And many applications permit people 
working on a file at different times to intentionally highlight 
changes; the problem of version control, for both software and 
text documents, can be ultimately construed as a problem of 
tracking joint activity.  Researchers have explored the possibility 
of representing presence using virtual embodiments that can point 
to screen objects [18]. 

However, none of these technologies provides the 
precise, moment-by-moment information about a collaborator's 
focus of attention that, we hypothesize, is available in eye gaze.  
People are very sensitive to their interlocutors' gaze and eye 
movements in certain situations; consider, for instance, how 
difficult it is to glance surreptitiously at one's watch during a face-
to-face conversation.  Eye gaze can provide multiple cues; it can 
point or select, serve as a general display of attentiveness (or 
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conversely, of distraction), support attributions about ongoing 
cognitive activity such as searching, comparing two objects, or 
deliberating, or give evidence about the status of a physical task.  
A glance may be not only instrumental (to the extent that looking 
is an unavoidable part of performing a visuo-spatial task), but also 
informative  (observers may be able to use partners' eye gaze in 
interpreting an utterance or recognizing an intention), or even 
communicative in the sense described by Grice [11] in that the 
gazer may intend for the observer to see where she is looking and 
to recognize that she intends to point or display attention to an 
object.  In video conferencing, it has been documented that gaze 
awareness ([9][20][32]) can enable one person to estimate where 
anotherís focus of attention is in a shared workspace.  

Eye gaze provides incremental and detailed information 
that is missing from more intentional forms of pointing with a 
mouse, trackball, touchpad, or stylus (see [1][2][4]). For instance, 
in a puzzle task in which individuals assembled a copy of a 
geometric model using a set of colored square pieces, patterns of 
eye fixations to the model showed that people encoded location 
and color in separate steps; this would not have been apparent 
from observing the mouse movements alone ([1][2]).  In this 
situation, eye movements were informative about the encoding 
processes that preceded the decision about where to move the 
mouse.  

On the other hand, eye movements are generally more 
ambiguous than mouse movements, simply because they are 
under less intentional control; so eye gaze is a poor choice of 
input modality for controlling a computer application with explicit 
commands when a user has other reliable input modalities 
available ([21]). Further, in most tasks there are multiple 
attributions for a given pattern of gaze (akin to the mode problem 
in HCI).  Because of such issues, Jacob [21] has advocated using 
eye movements for implicit rather than explicit commands in 
human-computer interaction.  

We agree with this assessment. The work we report here 
is part of a larger project on eye movements in mediated 
communication, in which we are using eye movements just as they 
are used in human communication--as implicit indicators of visual 
attention that can be used to achieve a joint focus of intention 
between two people collaborating remotely or asynchronously. 
But rather than having to estimate where a person is looking as in 
face-to-face communication, one person sees another's eyegaze 
represented as a cursor moving over a screen. We set out to 
demonstrate that having a visual representation of one person's 
eye gaze can improve another's performance in a visuo-spatial 
domain, namely, debugging computer programs. 

2. DEBUGGING COMPUTER CODE: A 
VISUO-SPATIAL  TASK 

Beginning programmers often turn to experts for help 
with a programming problem, only to find that the experts have 
trouble articulating what they know. Experts may be able to find 
bugs quickly without being able to teach beginners how to do so 
on their own because expertise involves pattern-recognition that 
occurs without explicit awareness [28].  Thus it is worth 
investigating non-verbal ways that experts might use to 
communicate and transfer their knowledge to novices. 

Past research on the differences between expert and 
novice programmers has been focused partially on the types of 
bugs made more commonly by novices.  A few major categories 
of bugs tend to account for most novice errors.  However, most 
novice bugs are not based on improper use of programming 
language constructs as many have assumed, but rather are a result 
of complicating or improperly carrying out programming goals.  A 
goal can be any task that a program is supposed to carry out, such 
as input validation or a calculation.  Novice programmers tend to 
make errors when they try to merge goals, as one of the goals is 
often seen as less important and gets carried out incorrectly or 
ignored entirely.  Construct-based errors, such as using logic 
operators incorrectly (i.e., using an ìorî operator where an ìandî 
should be) are significantly less common but still arise 
([31][29][30]).   

Other research has focused on the different ways in 
which experts and novices comprehend code.  Expertsí mental 
representations tend to be more abstract and contain more inter-
connected layers than novicesí representations.  Experts tend to 
recognize common programming patterns more and are more able 
to remember specific parts of the code [10].  They tend to build a 
top-down representation of a program and focus only on relevant 
information needed to solve a problem [23].  When given a 
problem, along with documentation and the code itself to solve it, 
experts tended to rely on the documentation to get a sense of 
where the relevant code was and needed to look at only 20% of 
the code.  

Research focusing specifically on debugging has shown 
that programmers tend to use slicing while debugging.  Slicing 
refers to mentally splitting up a program into sets of lines that are 
related by a common data flow (i.e. referencing the same data).  
Lines of code that do not affect those data are effectively stripped 
from that part of the programmerís mental representation of the 
program.  Programmers build these mental slices as they work 
backwards through a program, starting with the source of the bug 
[33].   In a study focusing specifically on the differences between 
novice and expert debugging [14], experts found more bugs, 
found them faster than novices, and tended to spend more time 
building a mental representation of the program and on program 
comprehension.  Experts also tended to be quicker to test potential 
solutions.  It is also worth noting that although this study also 
kept track of what the programmers were paying attention to 
(although not with an eye tracker), it tracked only whether the 
subject was reading code or reading a problem description. There 
was no difference in the way experts and novices divided their 
time between these two activities [14].  

Because the domain of software debugging is of broad 
interest to many in the HCI and CSCW communities, and because 
it involves a screen-based visuo-spatial task on which people 
often collaborate, we chose this domain in which to investigate 
the utility of eye gaze in problem-solving. Although we are 
ultimately interested in realistic, real-time, collaboration between 
remotely located, intracting partners with different perspectives or 
knowledge (such as experts and novices), for this initial study we 
made some simplifying assumptions aimed at demonstrating the 
utility of viewing  another person's instrumentally-produced eye 
gaze.  We had expert programmers view the pre-recorded eye gaze 
traces of other experts (who were not intending to communicate 
anything deictically about where they were looking) to see if 



awareness related to specific bugs could be transferred, enabling 
the viewers to find bugs faster.  While it seems likely that seeing a 
pointer to the part of a text file that needs to be changed in order 
to fix the bug (the edit point) would be helpful by itself, we 
reasoned that information in the visual search leading up to the 
edit point would also be useful, and in fact might be essential for 
viewers not only to find the edit point, but also to know what 
needed to be done to fix the bug.  On the other hand, it is possible 
that watching someone else's search pattern could slow down a 
viewer's attempt to find the bug, if the gaze trace were ambiguous 
or distracting. In the domain of software debugging, just what 
information is available in a collaborator's instrumental eyegaze? 

3. EXPERIMENT 
3.1 Design 

The experiment was divided into two phases.  In the 
first phase, four professional programmers visited the lab 
individually and found bugs in three small Java programs while 
wearing a lightweight (6.5 oz.) head-mounted  ISCAN RK-
726PCI pupil/corneal reflection eye tracker.  A miniature camera 
mounted on the visor recorded the programmer's view of the 
screen, and another camera tracked the programmer's eye gaze, 
which was overlaid over the screen image; this video image was 
recorded.  The programmers were asked to think out loud while 
finding the bugs, and their speech was recorded.  In the 
videotaped recordings, the screens of code were not legible; the 
only information available was the pattern of  the eye gaze trace 
displayed over a spatially correspondent screen layout where the 
lines of code were blurred.  

In the second phase, six different professional 
programmers found bugs in the three programs viewed by the 
original group.  However, for half of the bugs, they first viewed a 
(silent) videotape of another programmer's eye gaze trace for that 
bug; the rest of the time, they searched for the bug without having 
seen the eye gaze trace.  Programmers in Phase 2 did not wear the 
eye tracker, and they were not asked to think out loud. 

A total of eight bugs from the first phase were used as 
stimuli in second phase.  Two stimulus videotapes were made 
containing four bugs each, and three participants in the second 
phase were randomly assigned to view each tape. This design 
enabled us to examine the effect of eye gaze cues within-subjects 
and within-items. The bugs were blocked by visual evidence; half 
the subjects solved four bugs with visual evidence and then four 
without; the other half of the subjects solved the bugs in the same 
order but did the first four without visual evidence and the second 
four, with. So the experimental design varied eyegaze information 
both between- and within-subjects. 

3.2 Stimuli 
The stimuli came from three Java programs designed to 

be similar to real programs a novice programmer might be asked 
to debug. They were selected so that all parts of the program 
could fit on one screen, as scrolling would have made it difficult 
for programmers in the second phase to map  the videotaped eye 

gaze trace onto the screenfull of code.1  In addition, the text had to 
be large enough so that looking at the cursor in the eye gaze video 
could reasonably indicate which line within the program's layout a 
subject was looking at.  The programs were based on real 
assignments given to students in Stony Brookís introductory 
programming course (CSE 114) or were simple ìtoyî programs 
built to demonstrate a single concept or algorithm.    

The bugs themselves were chosen to emulate common 
errors a novice programmer might make.  In addition to basic 
errors with programming language constructs (such as using an 
incorrect operator), they included bugs caused by the following: 
combining two operations into one, improper understanding of an 
algorithm, incorrect conclusions about a problem (e.g., a value is 
calculated improperly), and plan-based errors, in which the wrong 
common programming ìtemplateî is used to solve a problem.  
They were chosen to represent a range of difficulty and several 
degrees of modularity, meaning the extent to which the program 
was broken up into different functions as opposed to one large 
function. 

The three Java programs were: 

1. Palindrome, a simple program that tested whether or not a 
sequence of characters is a palindrome.  Errors in this 
program included a problem with logical programming 
constructs and two more bugs caused by trying to do 
complex manipulations of strings in a single line where it 
would be easier to break it up between two or more lines.  
Incorrect understanding of Java strings could also cause the 
bugs.  Palindrome contained a moderate degree of 
modularity, as it was broken up into three functions within a 
single file. Two of the bugs were close to each other near the 
top of the screen while the third was towards the bottom.   

2. Shopper, a shopping cart simulator that allowed users to 
interact with a simulated shopping cart.  This program 
contained one construct-based and one plan-based bug.  It 
was also split into many functions spread across three files 
and was the most modular of the stimuli (note that the eye 
gaze videos were not complicated by the fact that the 
program had three files because the subjects could only look 
at one file at once).  Both bugs were in the same file, with 
one near the middle and one at the bottom.   

3. Triangle, a triangle drawing program.  The three errors were 
based around incorrect geometric calculations.  Triangle 
contained only one function and thus had the lowest degree 
of modularity.  One bug was near the top of the program, one 
was in the middle, and the last was towards the end. 

Note that all the bugs were logical rather than syntactic, meaning 
that all the programs could run; they just did not run correctly.     

 Out of 32 potential stimulus videos recorded in Phase 1, 
eight videos for Phase 2 (one per bug) were chosen based on the 
criteria of success (the programmer had to have found the bug), 
accuracy (the eye gaze trace had to accurately represent where the 
subject was actually looking, within 1-2 lines), length (shorter 

                                                                 
1 In a more realistic version of this debugging task, the screens of 

the collaborators would need to scroll in synchrony in order for 
them to share a focus of visual attention. 



durations were preferred to longer ones, to minimize the memory 
load on programmers in Phase 2), typicality (based on the first 
author's intuitions as a Java programmer), and insightfulness 
(traces that showed the subject looking through several portions 
of the code and referring to related areas before zeroing in on the 
bug location).  Tape A contained videos of subjects finding all 
three of the bugs for Palindrome and one of the bugs for Shopper.  
Tape B contained videos of the other bug for Shopper and all 
three bugs for Triangle.   

3.3 Participants 
The  four programmers in Phase 1 who generated the 

stimuli and the six who viewed them in Phase 2 were recent 
computer science graduates (within one year) from a variety of 
schools, now working professionally as software engineers. They 
were all experts relative to students just starting an undergraduate 
computer science program.  They each received $7 for 
participating in the study. The programmers in Phase 1 were male, 
as were five out of six in Phase 2. 

3.4 Procedure 
Programmers in the first phase wore the head-mounted 

eye tracker. After a brief calibration, the experimenter (the first 
author) gave each programmer an overview of what each program 
was supposed to do, a demonstration of the properly working 
program, and a demonstration of the incorrect version that needed 
debugging. Then the experimenter displayed the code onscreen 
and provided any necessary explanation of the object classes in 
the program. Finally, the programmer was given up to ten minutes 
to read through the program and find as many bugs as possible. 
Programmers were provided with scrap paper to help with any 
calculations they might have to do; however, they did not use the 
scrap paper much, so the eye gaze videos did not contain much 
off-screen looking.  They were also allowed to ask questions 
about the code as needed. Programmers were encouraged to think 
out loud as they searched, so that the experimenter could tell that 
they were finding the bugs correctly. Average times to find the 
eight bugs ranged from 81 to 225 seconds. Each time a 
programmer found a bug, he was instructed to say ìI found a bugî 
and explain what the error was and what the solution was (the 
programmers did not actually change the code and test their 
solutions).  The programmer was then asked if he wanted to 
continue.  After he wanted to stop or the ten minute period was 
up, he was informed about which bugs he had found correctly and 
which he had missed.  

At the outset of Phase 2, the programmers in the second 
group were told that they would be seeing videos of another 
programmer finding some, but not all, of the bugs that they 
themselves would have to find.  They were also told that their 
performance would be timed. The procedure in Phase 2 was 
otherwise identical to that in Phase 1, except that in the block of 
bug-finding trials with visual evidence, the programmer either 
viewed the videotape of the eye gaze trace for the first bug in that 
program just before seeing the screenfull of code, or not.  Because 
the actual words in the code were indistinct on the videotape, he 
or she then had to remember the spatial information about where 
the bug and related lines were in the code layout. The eight 
videotaped searches used as stimuli in Phase 2 ranged from about 
30 seconds in length to about 2.5 minutes. When a program 

(either Palindrome or Triangle) had multiple bugs in the visual 
evidence condition, the programmer alternated between viewing 
the video and trying to find the corresponding bug for up to six 
minutes. For Shopper, the programmer viewed whichever video 
he or she was assigned to, tried to find that bug, and then tried to 
find the other bug without first seeing a video. In the block of 
bug-finding trials without visual evidence (either Triangle or 
Palindrome), programmers had ten minutes to find as many bugs 
as possible, just as in Phase 1.  They could abandon the search for 
a bug at any time.  

After showing a programmer a video, the experimenter 
made sure that he or she had paid attention to it and offered a 
repeat viewing, since memory load was not being tested here.  
Then the programmer was shown the legible code on the screen. 
For each bug, the time from when the programmer began 
searching to when he or she said ìI found a bugî was recorded. 
After identifying the bug to the experimenter, the programmer was 
told whether it was correct. Timing was done using a stopwatch.  

3.5 Results 
The 3 trials in Phase 2 in which participants did not find 

bugs were not included for  analysis. Another 3 trials that took 
longer than  2 standard deviations above the mean (over 300 
seconds) were discarded.2 

As we hypothesized, participants in Phase 2 were faster 
to find a bug after viewing an eye gaze trace than without this 
visual cue. Viewing an eyegaze trace provided an advantage of 
about 62 seconds, on average. In an ANOVA with the data 
averaged by-subjects, F(1,5) = 6.17, p = .056; with the data 
averaged by-items, F(1,7) = 19.02, p = .003 (see Figure 1). 
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Figure 1. Mean bug-finding times,  with and without eyegaze 

                                                                 
2 Bugs B and C in Palindrome were located rather close together; 
if a programmer found bug C after seeing the video for B, the time 
was included under bug C.  Trials in Shopper where the subjects 
saw a video for bug E but found bug D first were included under 
the no gaze condition for bug D, since the subjects knew that D 
was not the intended bug and went on to continue to search for 
bug E.  Bug D was one of the easiest bugs and immediately 
popped out to some who glanced at it while searching for 
information relevant to the whole program. 



 The only bug that programmers took longer on average 
to find in the eye gaze condition than in the no gaze condition was 
bug G in the Triangle problem.  One participant took over five 
minutes to find this bug; upon debriefing, he explained that he 
had trouble remembering where the eye gaze in the video ended, 
as the movement of the eye gaze cursor was relatively erratic 
during the closing moments of the video. Another participant who 
took over two and a half minutes to find this bug echoed that 
comment. This suggests two things: (1) that the advantage of 
seeing an eye gaze trace before seeing the code is limited by 
having to remember it and use it later (a limitation in this pilot 
method that would not be present in a real-time version of the 
task), and (2) that eye gaze can be confusing if it does not follow a 
simple path (an effect that may be present in a real-time version of 
the task). 

 Only one participant was slower to solve problems for 
which he was in the eye gaze condition as opposed to the no gaze 
condition.  This participant found two of the three bugs in the 
Palindrome program (for which he was in the no gaze condition) 
unusually quickly (in less than one minute).  (Overall, the bugs in 
Palindrome were easier to find than those in other two programs.)  
On the Triangle program in the eye gaze condition, this 
participant took over two and a half minutes to find bug F (which, 
as previously explained, had a somewhat confusing video) and 
over four minutes to find bug G.  During debriefing he explained 
that he was having trouble checking the calculations involved in 
drawing the triangle.  Thus, although the deictic cues provided by 
eye gaze steered him in the right direction, they still could not 
compensate for his incomplete understanding of the problem. 

 Two participants could not find bug E at all; one was in 
the eye gaze condition, and one was in the no gaze condition.  In 
both cases, the subjects knew with near-certainty where the bug 
was but could not pinpoint what it was.  This confusion was due 
to the fact that the bug was designed as a common programming 
plan that ìlooked rightî, when in fact the wrong plan was being 
implemented.  Both participants were misled by the plan, but 
perhaps more importantly, even though the one in the eyegaze 
condition knew where the bug was he could not overcome his 
disposition towards believing that the plan was correct and thus 
could not find the bug. 

 For one of the bugs, bug B on the Palindrome problem, 
the eyegaze video sped up the subjects who saw it, but not as 
much as expected.  The bug was designed to be relatively simple ñ 
a long if-statement with its ands and ors reversed. We thought the 
error would be immediately apparent just from the beginning of 
the statement (which tested for a value less than 60 but greater 
than 90, clearly impossible).  However, even after seeing the eye 
gaze of another programmer and seeing which line the bug was 
on, participants still took substantial time to figure out exactly 
what the error was.  They all expressed that they had trouble 
because the statement was relatively long and did not contain any 
simplifying parenthesis, and so it was difficult to mentally parse 
the statement to find the error.  This problem might also have 
been due to the eyegaze video itself, though; it was relatively long 
(two and a half minutes, the longest of any video) and showed eye 
gaze focusing on the problematic line for most of the time rather 
than looking around.  After seeing the video, one participant 
remarked ìthis must be hard.î Thus, in this instance the eyegaze 

video might have made the bug look harder to find than it actually 
was. 

 When participants were solving Shopper, the largest and 
most modular of the three programs, the ones who had seen an 
eyegaze trace tended to go straight to the section containing the 
bugs after considering the other files either very briefly or not at 
all.  Thus, for larger programs, an eyegaze cue may significantly 
cut down the amount of code that needs inspecting.   

3.6 Discussion 
Eyegaze information may have helped people find bugs 

in two ways: by pointing out where in the code the edit point for 
the bug was, and by circumscribing the slice of information 
related to the bug during the visual search process. An observer 
can reasonably assume that if the eyegaze cursor consistently 
moves back and forth between where the bug is and other sections 
of the code, then the other sections are related to the bug in some 
way.  For the simplest bugs in our stimuli, the actual ending of the 
eyegaze videos may have been the most useful piece of 
information to the subjects. We expect that the logical information 
that may be derived from the full tracing of a programmerís search 
would probably be more useful, the more complex the bug, and 
the longer the program. 

It is perhaps surprising that we found a clear effect of 
eye gaze with so few participants and debugging problems, 
especially given the other limitations placed upon the participants. 
Programmers in Phase 2 had to rely on memory while mapping 
the cues from the videotape of each eyegaze trace to its 
subsequent screenfull of code. If they could have viewed the 
eyegaze trace superimposed over legible code, the cues provided 
by eye gaze might have been even more useful. We expect further 
advantages to having gaze cues with the addition of a voice link 
and the ability to interact with a temporally co-present 
collaborator.  Elsewhere, we have found that addressees can 
disambiguate a speaker's referring expressions earlier when they 
can see where the speaker is looking ([16][17]). 

4. IMPLICATIONS  FOR FUTURE WORK 
This study demonstrates that one person's eye gaze, 

even when produced instrumentally  (in the service of doing a task 
and in the absence of an intention to communicate), can provide 
useful cues to another person of roughly equal skill in a software 
debugging task. It further confirms that programming is an 
appropriate visuo-spatial domain for examining the effects of 
shared visual attention on collaboration.  

Questions that remain to be answered are the extent to 
which eye gaze may be useful to people collaborating in real-time, 
the extent to which it may provide benefits beyond those of 
intentionally pointing with a mouse, how it may interact with 
having a voice channel, and whether viewing an expert 
programmer's eye gaze can provide interpretable cues to a novice.  
Novice programmers may be unable to quickly interpret experts' 
gazes to a slice, and so the gaze trace may indicate merely where a 
bug is without helping them with what it is. On the other hand, if 
there were a voice channel and the novice could listen to the 
expert explain a bug in real time, seeing the expert's looks to the 
relevant slice of code may be helpful beyond what is gained from 



seeing only a mouse cursor intentionally indicating an edit point 
in the code.  

Even if novices lack the experience and knowledge base 
needed to benefit from experts' eyegaze patterns, there may exist 
potential benefit in using eye tracking to support collaborationñ
but in the other direction: An expert who can observe a novice's 
eye gaze may be able to track whether the novice is understanding 
an explanation and to better diagnose the novice's state of 
(mis)understanding. As eye trackers become cheaper, less 
intrusive, and more accurate, we expect that eye gaze will become 
a key element in interfaces that support mediated communication 
and collaboration. 
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