
Another Person's Eye Gaze as a Cue in Solving
Programming Problems

Randy Stein

Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400

rbstein@optonline.net

Susan E. Brennan

Department of Psychology
State University of New York
Stony Brook, NY 11794-2500

susan.brennan@sunysb.edu
ABSTRACT

Expertise in computer programming can often be
difficult to transfer verbally. Moreover, technical training and
communication occur more and more between people who are
located at a distance. We tested the hypothesis that seeing one
person's visual focus of attention (represented as an eyegaze
cursor) while debugging software (displayed as text on a screen)
can be helpful to another person doing the same task. In an
experiment, a group of professional programmers searched for
bugs in small Java programs while wearing an unobtrusive head-
mounted eye tracker. Later, a second set of programmers
searched for bugs in the same programs. For half of the bugs, the
second set of programmers first viewed a recording of an eyegaze
cursor from one of the first programmers displayed over the
(indistinct) screen of code, and for the other half they did not.
The second set of programmers found the bugs more quickly after
viewing the eye gaze of the first programmers, suggesting that
another person's eye gaze, produced instrumentally (as opposed to
intentionally, like pointing with a mouse), can be a useful cue in
problem solving. This finding supports the potential of eye gaze
as a valuable cue for collaborative interaction in a visuo-spatial
task conducted at a distance.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces - collaborative computing asynchronous
interaction, synchronous interaction, computer-supported
cooperative work. H.4.3 [Information Interfaces and
Presentation]: Communications Applications -
videoconferencing.

General Terms
Human Factors, Experimentation.

Keywords
Eye tracking, visual co-presence, mediated communication, gaze-
based & attentional interfaces, programming, debugging.

1. INTRODUCTION
 Achieving a joint focus of attention is critical for successful
communication and collaboration. While speaking, people
provide many cues about their focus of attention with the
syntactic and lexical choices they make, as well as with
intonation; such information can be represented in a context
model that enables addressees to interpret referring expressions
that might otherwise be ambiguous (see, e.g., [5] [12] [13]). For a
physical task, particularly one with a visuo-spatial component,
being able to see what a partner is doing makes communication
much more efficient than not seeing such information ([3] [4] [6]
[8] [22]). When collaborators communicate at a distance, the most
useful kind of visual information appears to be a shared task
artifact; studies of video conferencing have shown that being able
to view a document that a conversational partner is looking at
during a joint task is more useful than being able to see the
partner's face ([25] [27] [34] [35]).

Unfortunately, when people collaborate remotely
(whether at different places or different times), it can be difficult
for them to become aware of one another's focus of attention [7].
A number of technologies have been invented to support joint
activity and awareness; for instance, GroupWeb [15] slaves web
browsers together so that when one is scrolled, the other follows,
and Piazza [19] enables people to see (and contact) others who
are visiting the same web site at the same time. Other systems
enable experts to visualize and control novices' workstations
remotely, in order for the experts to help debug problems; these
are more effective than telephone help alone. Some of these
systems display where a partner's input cursor is, enabling deixis
(referring by pointing). And many applications permit people
working on a file at different times to intentionally highlight
changes; the problem of version control, for both software and
text documents, can be ultimately construed as a problem of
tracking joint activity. Researchers have explored the possibility
of representing presence using virtual embodiments that can point
to screen objects [18].

However, none of these technologies provides the
precise, moment-by-moment information about a collaborator's
focus of attention that, we hypothesize, is available in eye gaze.
People are very sensitive to their interlocutors' gaze and eye
movements in certain situations; consider, for instance, how
difficult it is to glance surreptitiously at one's watch during a face-
to-face conversation. Eye gaze can provide multiple cues; it can
point or select, serve as a general display of attentiveness (or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICMIí04, October 13ñ15, 2004, State College, PA, USA

Copyright 2004 ACM 1-58113-000-0/00/0004Ö$5.00.

conversely, of distraction), support attributions about ongoing
cognitive activity such as searching, comparing two objects, or
deliberating, or give evidence about the status of a physical task.
A glance may be not only instrumental (to the extent that looking
is an unavoidable part of performing a visuo-spatial task), but also
informative (observers may be able to use partners' eye gaze in
interpreting an utterance or recognizing an intention), or even
communicative in the sense described by Grice [11] in that the
gazer may intend for the observer to see where she is looking and
to recognize that she intends to point or display attention to an
object. In video conferencing, it has been documented that gaze
awareness ([9][20][32]) can enable one person to estimate where
anotherís focus of attention is in a shared workspace.

Eye gaze provides incremental and detailed information
that is missing from more intentional forms of pointing with a
mouse, trackball, touchpad, or stylus (see [1][2][4]). For instance,
in a puzzle task in which individuals assembled a copy of a
geometric model using a set of colored square pieces, patterns of
eye fixations to the model showed that people encoded location
and color in separate steps; this would not have been apparent
from observing the mouse movements alone ([1][2]). In this
situation, eye movements were informative about the encoding
processes that preceded the decision about where to move the
mouse.

On the other hand, eye movements are generally more
ambiguous than mouse movements, simply because they are
under less intentional control; so eye gaze is a poor choice of
input modality for controlling a computer application with explicit
commands when a user has other reliable input modalities
available ([21]). Further, in most tasks there are multiple
attributions for a given pattern of gaze (akin to the mode problem
in HCI). Because of such issues, Jacob [21] has advocated using
eye movements for implicit rather than explicit commands in
human-computer interaction.

We agree with this assessment. The work we report here
is part of a larger project on eye movements in mediated
communication, in which we are using eye movements just as they
are used in human communication--as implicit indicators of visual
attention that can be used to achieve a joint focus of intention
between two people collaborating remotely or asynchronously.
But rather than having to estimate where a person is looking as in
face-to-face communication, one person sees another's eyegaze
represented as a cursor moving over a screen. We set out to
demonstrate that having a visual representation of one person's
eye gaze can improve another's performance in a visuo-spatial
domain, namely, debugging computer programs.

2. DEBUGGING COMPUTER CODE: A
VISUO-SPATIAL TASK

Beginning programmers often turn to experts for help
with a programming problem, only to find that the experts have
trouble articulating what they know. Experts may be able to find
bugs quickly without being able to teach beginners how to do so
on their own because expertise involves pattern-recognition that
occurs without explicit awareness [28]. Thus it is worth
investigating non-verbal ways that experts might use to
communicate and transfer their knowledge to novices.

Past research on the differences between expert and
novice programmers has been focused partially on the types of
bugs made more commonly by novices. A few major categories
of bugs tend to account for most novice errors. However, most
novice bugs are not based on improper use of programming
language constructs as many have assumed, but rather are a result
of complicating or improperly carrying out programming goals. A
goal can be any task that a program is supposed to carry out, such
as input validation or a calculation. Novice programmers tend to
make errors when they try to merge goals, as one of the goals is
often seen as less important and gets carried out incorrectly or
ignored entirely. Construct-based errors, such as using logic
operators incorrectly (i.e., using an ìorî operator where an ìandî
should be) are significantly less common but still arise
([31][29][30]).

Other research has focused on the different ways in
which experts and novices comprehend code. Expertsí mental
representations tend to be more abstract and contain more inter-
connected layers than novicesí representations. Experts tend to
recognize common programming patterns more and are more able
to remember specific parts of the code [10]. They tend to build a
top-down representation of a program and focus only on relevant
information needed to solve a problem [23]. When given a
problem, along with documentation and the code itself to solve it,
experts tended to rely on the documentation to get a sense of
where the relevant code was and needed to look at only 20% of
the code.

Research focusing specifically on debugging has shown
that programmers tend to use slicing while debugging. Slicing
refers to mentally splitting up a program into sets of lines that are
related by a common data flow (i.e. referencing the same data).
Lines of code that do not affect those data are effectively stripped
from that part of the programmerís mental representation of the
program. Programmers build these mental slices as they work
backwards through a program, starting with the source of the bug
[33]. In a study focusing specifically on the differences between
novice and expert debugging [14], experts found more bugs,
found them faster than novices, and tended to spend more time
building a mental representation of the program and on program
comprehension. Experts also tended to be quicker to test potential
solutions. It is also worth noting that although this study also
kept track of what the programmers were paying attention to
(although not with an eye tracker), it tracked only whether the
subject was reading code or reading a problem description. There
was no difference in the way experts and novices divided their
time between these two activities [14].

Because the domain of software debugging is of broad
interest to many in the HCI and CSCW communities, and because
it involves a screen-based visuo-spatial task on which people
often collaborate, we chose this domain in which to investigate
the utility of eye gaze in problem-solving. Although we are
ultimately interested in realistic, real-time, collaboration between
remotely located, intracting partners with different perspectives or
knowledge (such as experts and novices), for this initial study we
made some simplifying assumptions aimed at demonstrating the
utility of viewing another person's instrumentally-produced eye
gaze. We had expert programmers view the pre-recorded eye gaze
traces of other experts (who were not intending to communicate
anything deictically about where they were looking) to see if

awareness related to specific bugs could be transferred, enabling
the viewers to find bugs faster. While it seems likely that seeing a
pointer to the part of a text file that needs to be changed in order
to fix the bug (the edit point) would be helpful by itself, we
reasoned that information in the visual search leading up to the
edit point would also be useful, and in fact might be essential for
viewers not only to find the edit point, but also to know what
needed to be done to fix the bug. On the other hand, it is possible
that watching someone else's search pattern could slow down a
viewer's attempt to find the bug, if the gaze trace were ambiguous
or distracting. In the domain of software debugging, just what
information is available in a collaborator's instrumental eyegaze?

3. EXPERIMENT
3.1 Design

The experiment was divided into two phases. In the
first phase, four professional programmers visited the lab
individually and found bugs in three small Java programs while
wearing a lightweight (6.5 oz.) head-mounted ISCAN RK-
726PCI pupil/corneal reflection eye tracker. A miniature camera
mounted on the visor recorded the programmer's view of the
screen, and another camera tracked the programmer's eye gaze,
which was overlaid over the screen image; this video image was
recorded. The programmers were asked to think out loud while
finding the bugs, and their speech was recorded. In the
videotaped recordings, the screens of code were not legible; the
only information available was the pattern of the eye gaze trace
displayed over a spatially correspondent screen layout where the
lines of code were blurred.

In the second phase, six different professional
programmers found bugs in the three programs viewed by the
original group. However, for half of the bugs, they first viewed a
(silent) videotape of another programmer's eye gaze trace for that
bug; the rest of the time, they searched for the bug without having
seen the eye gaze trace. Programmers in Phase 2 did not wear the
eye tracker, and they were not asked to think out loud.

A total of eight bugs from the first phase were used as
stimuli in second phase. Two stimulus videotapes were made
containing four bugs each, and three participants in the second
phase were randomly assigned to view each tape. This design
enabled us to examine the effect of eye gaze cues within-subjects
and within-items. The bugs were blocked by visual evidence; half
the subjects solved four bugs with visual evidence and then four
without; the other half of the subjects solved the bugs in the same
order but did the first four without visual evidence and the second
four, with. So the experimental design varied eyegaze information
both between- and within-subjects.

3.2 Stimuli
The stimuli came from three Java programs designed to

be similar to real programs a novice programmer might be asked
to debug. They were selected so that all parts of the program
could fit on one screen, as scrolling would have made it difficult
for programmers in the second phase to map the videotaped eye

gaze trace onto the screenfull of code.1 In addition, the text had to
be large enough so that looking at the cursor in the eye gaze video
could reasonably indicate which line within the program's layout a
subject was looking at. The programs were based on real
assignments given to students in Stony Brookís introductory
programming course (CSE 114) or were simple ìtoyî programs
built to demonstrate a single concept or algorithm.

The bugs themselves were chosen to emulate common
errors a novice programmer might make. In addition to basic
errors with programming language constructs (such as using an
incorrect operator), they included bugs caused by the following:
combining two operations into one, improper understanding of an
algorithm, incorrect conclusions about a problem (e.g., a value is
calculated improperly), and plan-based errors, in which the wrong
common programming ìtemplateî is used to solve a problem.
They were chosen to represent a range of difficulty and several
degrees of modularity, meaning the extent to which the program
was broken up into different functions as opposed to one large
function.

The three Java programs were:

1. Palindrome, a simple program that tested whether or not a
sequence of characters is a palindrome. Errors in this
program included a problem with logical programming
constructs and two more bugs caused by trying to do
complex manipulations of strings in a single line where it
would be easier to break it up between two or more lines.
Incorrect understanding of Java strings could also cause the
bugs. Palindrome contained a moderate degree of
modularity, as it was broken up into three functions within a
single file. Two of the bugs were close to each other near the
top of the screen while the third was towards the bottom.

2. Shopper, a shopping cart simulator that allowed users to
interact with a simulated shopping cart. This program
contained one construct-based and one plan-based bug. It
was also split into many functions spread across three files
and was the most modular of the stimuli (note that the eye
gaze videos were not complicated by the fact that the
program had three files because the subjects could only look
at one file at once). Both bugs were in the same file, with
one near the middle and one at the bottom.

3. Triangle, a triangle drawing program. The three errors were
based around incorrect geometric calculations. Triangle
contained only one function and thus had the lowest degree
of modularity. One bug was near the top of the program, one
was in the middle, and the last was towards the end.

Note that all the bugs were logical rather than syntactic, meaning
that all the programs could run; they just did not run correctly.

 Out of 32 potential stimulus videos recorded in Phase 1,
eight videos for Phase 2 (one per bug) were chosen based on the
criteria of success (the programmer had to have found the bug),
accuracy (the eye gaze trace had to accurately represent where the
subject was actually looking, within 1-2 lines), length (shorter

1 In a more realistic version of this debugging task, the screens of

the collaborators would need to scroll in synchrony in order for
them to share a focus of visual attention.

durations were preferred to longer ones, to minimize the memory
load on programmers in Phase 2), typicality (based on the first
author's intuitions as a Java programmer), and insightfulness
(traces that showed the subject looking through several portions
of the code and referring to related areas before zeroing in on the
bug location). Tape A contained videos of subjects finding all
three of the bugs for Palindrome and one of the bugs for Shopper.
Tape B contained videos of the other bug for Shopper and all
three bugs for Triangle.

3.3 Participants
The four programmers in Phase 1 who generated the

stimuli and the six who viewed them in Phase 2 were recent
computer science graduates (within one year) from a variety of
schools, now working professionally as software engineers. They
were all experts relative to students just starting an undergraduate
computer science program. They each received $7 for
participating in the study. The programmers in Phase 1 were male,
as were five out of six in Phase 2.

3.4 Procedure
Programmers in the first phase wore the head-mounted

eye tracker. After a brief calibration, the experimenter (the first
author) gave each programmer an overview of what each program
was supposed to do, a demonstration of the properly working
program, and a demonstration of the incorrect version that needed
debugging. Then the experimenter displayed the code onscreen
and provided any necessary explanation of the object classes in
the program. Finally, the programmer was given up to ten minutes
to read through the program and find as many bugs as possible.
Programmers were provided with scrap paper to help with any
calculations they might have to do; however, they did not use the
scrap paper much, so the eye gaze videos did not contain much
off-screen looking. They were also allowed to ask questions
about the code as needed. Programmers were encouraged to think
out loud as they searched, so that the experimenter could tell that
they were finding the bugs correctly. Average times to find the
eight bugs ranged from 81 to 225 seconds. Each time a
programmer found a bug, he was instructed to say ìI found a bugî
and explain what the error was and what the solution was (the
programmers did not actually change the code and test their
solutions). The programmer was then asked if he wanted to
continue. After he wanted to stop or the ten minute period was
up, he was informed about which bugs he had found correctly and
which he had missed.

At the outset of Phase 2, the programmers in the second
group were told that they would be seeing videos of another
programmer finding some, but not all, of the bugs that they
themselves would have to find. They were also told that their
performance would be timed. The procedure in Phase 2 was
otherwise identical to that in Phase 1, except that in the block of
bug-finding trials with visual evidence, the programmer either
viewed the videotape of the eye gaze trace for the first bug in that
program just before seeing the screenfull of code, or not. Because
the actual words in the code were indistinct on the videotape, he
or she then had to remember the spatial information about where
the bug and related lines were in the code layout. The eight
videotaped searches used as stimuli in Phase 2 ranged from about
30 seconds in length to about 2.5 minutes. When a program

(either Palindrome or Triangle) had multiple bugs in the visual
evidence condition, the programmer alternated between viewing
the video and trying to find the corresponding bug for up to six
minutes. For Shopper, the programmer viewed whichever video
he or she was assigned to, tried to find that bug, and then tried to
find the other bug without first seeing a video. In the block of
bug-finding trials without visual evidence (either Triangle or
Palindrome), programmers had ten minutes to find as many bugs
as possible, just as in Phase 1. They could abandon the search for
a bug at any time.

After showing a programmer a video, the experimenter
made sure that he or she had paid attention to it and offered a
repeat viewing, since memory load was not being tested here.
Then the programmer was shown the legible code on the screen.
For each bug, the time from when the programmer began
searching to when he or she said ìI found a bugî was recorded.
After identifying the bug to the experimenter, the programmer was
told whether it was correct. Timing was done using a stopwatch.

3.5 Results
The 3 trials in Phase 2 in which participants did not find

bugs were not included for analysis. Another 3 trials that took
longer than 2 standard deviations above the mean (over 300
seconds) were discarded.2

As we hypothesized, participants in Phase 2 were faster
to find a bug after viewing an eye gaze trace than without this
visual cue. Viewing an eyegaze trace provided an advantage of
about 62 seconds, on average. In an ANOVA with the data
averaged by-subjects, F(1,5) = 6.17, p = .056; with the data
averaged by-items, F(1,7) = 19.02, p = .003 (see Figure 1).

0

20

40

60

80

100

120

140

160

Eyegaze No Eyegaze

Figure 1. Mean bug-finding times, with and without eyegaze

2 Bugs B and C in Palindrome were located rather close together;
if a programmer found bug C after seeing the video for B, the time
was included under bug C. Trials in Shopper where the subjects
saw a video for bug E but found bug D first were included under
the no gaze condition for bug D, since the subjects knew that D
was not the intended bug and went on to continue to search for
bug E. Bug D was one of the easiest bugs and immediately
popped out to some who glanced at it while searching for
information relevant to the whole program.

 The only bug that programmers took longer on average
to find in the eye gaze condition than in the no gaze condition was
bug G in the Triangle problem. One participant took over five
minutes to find this bug; upon debriefing, he explained that he
had trouble remembering where the eye gaze in the video ended,
as the movement of the eye gaze cursor was relatively erratic
during the closing moments of the video. Another participant who
took over two and a half minutes to find this bug echoed that
comment. This suggests two things: (1) that the advantage of
seeing an eye gaze trace before seeing the code is limited by
having to remember it and use it later (a limitation in this pilot
method that would not be present in a real-time version of the
task), and (2) that eye gaze can be confusing if it does not follow a
simple path (an effect that may be present in a real-time version of
the task).

 Only one participant was slower to solve problems for
which he was in the eye gaze condition as opposed to the no gaze
condition. This participant found two of the three bugs in the
Palindrome program (for which he was in the no gaze condition)
unusually quickly (in less than one minute). (Overall, the bugs in
Palindrome were easier to find than those in other two programs.)
On the Triangle program in the eye gaze condition, this
participant took over two and a half minutes to find bug F (which,
as previously explained, had a somewhat confusing video) and
over four minutes to find bug G. During debriefing he explained
that he was having trouble checking the calculations involved in
drawing the triangle. Thus, although the deictic cues provided by
eye gaze steered him in the right direction, they still could not
compensate for his incomplete understanding of the problem.

 Two participants could not find bug E at all; one was in
the eye gaze condition, and one was in the no gaze condition. In
both cases, the subjects knew with near-certainty where the bug
was but could not pinpoint what it was. This confusion was due
to the fact that the bug was designed as a common programming
plan that ìlooked rightî, when in fact the wrong plan was being
implemented. Both participants were misled by the plan, but
perhaps more importantly, even though the one in the eyegaze
condition knew where the bug was he could not overcome his
disposition towards believing that the plan was correct and thus
could not find the bug.

 For one of the bugs, bug B on the Palindrome problem,
the eyegaze video sped up the subjects who saw it, but not as
much as expected. The bug was designed to be relatively simple ñ
a long if-statement with its ands and ors reversed. We thought the
error would be immediately apparent just from the beginning of
the statement (which tested for a value less than 60 but greater
than 90, clearly impossible). However, even after seeing the eye
gaze of another programmer and seeing which line the bug was
on, participants still took substantial time to figure out exactly
what the error was. They all expressed that they had trouble
because the statement was relatively long and did not contain any
simplifying parenthesis, and so it was difficult to mentally parse
the statement to find the error. This problem might also have
been due to the eyegaze video itself, though; it was relatively long
(two and a half minutes, the longest of any video) and showed eye
gaze focusing on the problematic line for most of the time rather
than looking around. After seeing the video, one participant
remarked ìthis must be hard.î Thus, in this instance the eyegaze

video might have made the bug look harder to find than it actually
was.

 When participants were solving Shopper, the largest and
most modular of the three programs, the ones who had seen an
eyegaze trace tended to go straight to the section containing the
bugs after considering the other files either very briefly or not at
all. Thus, for larger programs, an eyegaze cue may significantly
cut down the amount of code that needs inspecting.

3.6 Discussion
Eyegaze information may have helped people find bugs

in two ways: by pointing out where in the code the edit point for
the bug was, and by circumscribing the slice of information
related to the bug during the visual search process. An observer
can reasonably assume that if the eyegaze cursor consistently
moves back and forth between where the bug is and other sections
of the code, then the other sections are related to the bug in some
way. For the simplest bugs in our stimuli, the actual ending of the
eyegaze videos may have been the most useful piece of
information to the subjects. We expect that the logical information
that may be derived from the full tracing of a programmerís search
would probably be more useful, the more complex the bug, and
the longer the program.

It is perhaps surprising that we found a clear effect of
eye gaze with so few participants and debugging problems,
especially given the other limitations placed upon the participants.
Programmers in Phase 2 had to rely on memory while mapping
the cues from the videotape of each eyegaze trace to its
subsequent screenfull of code. If they could have viewed the
eyegaze trace superimposed over legible code, the cues provided
by eye gaze might have been even more useful. We expect further
advantages to having gaze cues with the addition of a voice link
and the ability to interact with a temporally co-present
collaborator. Elsewhere, we have found that addressees can
disambiguate a speaker's referring expressions earlier when they
can see where the speaker is looking ([16][17]).

4. IMPLICATIONS FOR FUTURE WORK
This study demonstrates that one person's eye gaze,

even when produced instrumentally (in the service of doing a task
and in the absence of an intention to communicate), can provide
useful cues to another person of roughly equal skill in a software
debugging task. It further confirms that programming is an
appropriate visuo-spatial domain for examining the effects of
shared visual attention on collaboration.

Questions that remain to be answered are the extent to
which eye gaze may be useful to people collaborating in real-time,
the extent to which it may provide benefits beyond those of
intentionally pointing with a mouse, how it may interact with
having a voice channel, and whether viewing an expert
programmer's eye gaze can provide interpretable cues to a novice.
Novice programmers may be unable to quickly interpret experts'
gazes to a slice, and so the gaze trace may indicate merely where a
bug is without helping them with what it is. On the other hand, if
there were a voice channel and the novice could listen to the
expert explain a bug in real time, seeing the expert's looks to the
relevant slice of code may be helpful beyond what is gained from

seeing only a mouse cursor intentionally indicating an edit point
in the code.

Even if novices lack the experience and knowledge base
needed to benefit from experts' eyegaze patterns, there may exist
potential benefit in using eye tracking to support collaborationñ
but in the other direction: An expert who can observe a novice's
eye gaze may be able to track whether the novice is understanding
an explanation and to better diagnose the novice's state of
(mis)understanding. As eye trackers become cheaper, less
intrusive, and more accurate, we expect that eye gaze will become
a key element in interfaces that support mediated communication
and collaboration.

5. ACKNOWLEDGMENTS
This material is based upon work supported by the

National Science Foundation under Grants No. 0082602 and
9980013. We thank Gregory Zelinsky and Richard Gerrig for
their contributions to this work.

6. REFERENCES
[1] Ballard, D. H., Hayhoe, M. M., Li, F., and Whitehead, S. D.

(1992). Hand-eye coordination during sequential tasks.
Philosophical Transactions of the Royal Society of London,
B(337), 331-339.

[2] Ballard, D. H., Hayhoe, M. M., and Pelz, J. B. (1995).
Memory representations in natural tasks. Journal of
Cognitive Neuroscience, 7(1), 66-80.

[3] Brennan, S. E. (1990). Seeking and providing evidence for
mutual understanding. Unpublished doctoral dissertation,
Stanford University.

[4] Brennan, S. E. (In press). How conversation is shaped by
visual and spoken evidence. In J. Trueswell and M.
Tanenhaus (Eds.), World Situated Language Use:
Psycholinguistic, Linguistic and Computational Perspectives
on Bridging the Product and Action Traditions. Cambridge,
MA: MIT Press.

[5] Brennan, S. E. (1995). Centering attention in discourse.
Language and Cognitive Processes, 10, 137-167.

[6] Brennan, S. E. and Lockridge, C. B. Monitoring an
addressee's visual attention: Effects of visual co-presence on
referring in conversation. Unpublished manuscript.

[7] Clark, H.H. and Brennan, S.E. (1991). Grounding in
communication. In L.B. Resnick, J.M. Levine and S.D.
Teasley (Eds.) Perspectives on socially shared cognition (pp.
127-149). Washington, DC: American Psychological
Association.

[8] Doherty-Sneddon, G., Anderson, A., OíMalley, C., Langton,
S., Garrod, S., and Bruce, V. (1997). Face-to-face and
video-mediated communication: A comparison of dialogue
structure and task performance. Journal of Experimental
Psychology: Applied, 3, 105-125.

[9] Dourish, P., Adler, A., Bellotti, V., and Henderson, A.
(1996). Your place or mine? Learning from long-term use
of audio-video communication. Computer Supported
Cooperative Work, 5, 33-62.

[10] Fix, V., Wiedenbeck, S., and Scholtz, J. Mental
representations of programs by novices and experts.
Proceedings of the SIGCHI conference on human factors in
computing systems (CHI 93)

[11] Grice, H. P. (1975). Logic and conversation (from the
William James lectures, Harvard University, 1967). In P.
Cole and J. Morgan (Eds.), Syntax and semantics 3: Speech
acts. (pp. 41-58). New York: Academic Press.

[12] Grosz, B. J., Joshi, A. K., and Weinstein, S. (1995).
Centering: A framework for modelling the local coherence of
discourse. Computational Linguistics.

[13] Grosz, B. J. and Sidner, C. L. (1986). Attention, intentions,
and the structure of discourse. Computational Linguistics,
12, 175-204.

[14] Gugerty, L and Olson, G.M. (1986) ìDebugging by Skilled
and Novice Programmers.î CHI í86 Proceedings,171-174.

[15] Gutwin, C., Greenberg, S., and Roseman, M. (1996).
Supporting awareness of others in groupware. ACM CHI í96
Conference Companion.

[16] Hanna, J. E, and Brennan, S. E. (2003). Eye gaze has
immediate effects on reference resolution in conversation.
Abstracts of the Psychonomic Society, 44th Annual Meeting
(p. 124), Vancouver, Canada.

[17] Hanna, J.E. and Brennan, S. E. (2004). Using a Speaker's
Eye gaze During Comprehension: A Cue Both Rapid and
Flexible. Abstract, 17th Annual CUNY Conference on
Human Sentence Processing, College Park, MD.

[18] Hindmarsh, Fraser, Heath, Benford, and Greenhalgh,
1998.Hindmarsh, J. Fraser, M., Heath, C., Benford, S., and
Greenhalgh, C. (1998). Fragmented interaction: establishing
mutual orientation in virtual environments. Proceedings
ACM Conference on Computer supported Cooperative Work
(pp. 217-226), November 14 - 18, 1998, Seattle, WA.

[19] Isaacs, E. A., Tang, J. C., and Morris, T. (1996). Piazza: A
desktop environment supporting impromptu and planned
interactions. CSCW í96, 315-324.

[20] Ishii, H., Kobayshi, M., and Grudin, J. (1992). Integration of
inter-personal space and shared workspace: ClearBoard
design and experiments. In Proceedings, ACM Conference
on Computer-Supported Cooperative Work, CSCW í92 (pp.
33-42). New York: ACM Press.

[21] Jacob, R. J. K. (1995). Eye tracking in advanced interface
design. In W. Barfield and T. A. Furness (Eds.), Virtual
environments and advanced interface design (pp. 258-308).
New York: OxfordUniversity Press.

[22] Karsenty, L. (1999). Cooperative work and shared visual
context: An empirical study of comprehension problems in
side-by-side and remote help dialogues. Human-Computer
Interaction, 14, 283-316.

[23] Koenemann, J., and Robertson, S. P. (1991) "Expert Problem
Solving Strategies for Program Comprehension." Human
Factors in Computing Systems: CHI í91, 125-130.

[24] Kraut, R. E., Fussell, S. R., Brennan, S. E., and Siegel, J.
(2002). Understanding effects of proximity on collaboration :
Implications for technologies to support remote collaborative

work. In P. Hinds and S. Kiesler, Distributed work (pp. 137-
162). Cambridge, MA: MIT Press.

[25] Nardi, B., Schwartz, H. Kuchinsky, A., Leichner, R.,
Whittaker, S., and Sclabassi, R. (1993). Turning away from
talking heads: An analysis of video-as-data. Proceedings,
CHI '99, Human Factors in Computing Systems, pp. 327-
334. New York: ACM.

[26] Ramalingam, V. and Wiedenbeck, S. (1997). ìAn Empirical
Study of Novice Program Comprehension in the Imperative
and Object-Oriented Stylesî. Papers presented at the seventh
workshop on Empirical studies of programmers, 124-139.

[27] Sellen, A. J. (1995). Remote conversations: The effects of
mediating talk with technology. Human-Computer
Interaction, 10, 401-444.

[28] Soloway, E, Bonar, J. and Elrich, K (1982). ìTapping into
tacit programming knowledgeî. Proceedings of the first
major conference on Human factors in computers
systems,.52-57.

[29] Spohrer, J.C, and Soloway, E. (1986a). ìAlternatives to
construct-based programming misconceptionsî. ACM

SIGCHI Bulletin , Conference proceedings on Human
factors in computing systems. Volume 17 Issue 4.

[30] Spohrer, J. C. and Soloway, E. (1986b) ìNovice mistakes:
are the folk wisdoms correct?î. Communications of the
ACM. Volume 29 Issue 7.

[31] Spohrer, J. C., Soloway, E, and Pope, E. (1985). ìWhere the
Bugs Areî. CHI í85Proceedings, 47-53.

[32] Tang, J. and Isaacs, E. (1993). Why do users like video?
Studies of multimedia-supported collaboration. Computer
Supported Cooperative Work, 11, 163-196.

[33] Weiser, M. (1982) ìProgrammers Use Slices When
Debuggingî. Communications of the ACM. Volume 25
Issue 7, 446-453.

[34] Whittaker, S. (1995) Rethinking video as a technology for
interpersonal communications: theory and design
implications. International Journal of Man-Machine Studies,
42, 501-529.

[35] Whittaker, S. and Geelhoed, E. (1993). Shared workspaces:
How do they work and when are they useful? International
Journal of Man-Machine Studies, 39, 813-842

