Learning and Cognition in the Content Areas



## Developmental Changes in Mathematics

**Pre-K–Grade 2** Count past 20, add/subtract single digits

**Grades 3–5** Multiplicative reasoning, equivalence, and computational fluency

## Developmental Changes in Mathematics

**Grades 6–8** Algebra and geometry, quantitative life solutions

**Grades 9–12** Students should experience algebra, geometry, statistics, probability, and discrete mathematics

| DRILL &     | PRACTICE   |
|-------------|------------|
| 2 + 3 = ?   | 4 - 2 = ?  |
| 5 - 3 = ?   | 4 + 7 = ?  |
| 9 + 7 = ?   | 12         |
| 32          | + 24       |
| <u>- 17</u> | 5 x 6 = ?  |
| 2 + ? = 7   | 5 x ? = 45 |



### **PRINCIPLES OF DRILL AND PRACTICE**

• SIMPLE TO COMPLEX (order of problem presentation)

• DISTRIBUTED PRACTICE BETTER (e.g., if you are going to study for one hour, break it down into two 1/2 hour or 3 twenty minutes segments)

• MIXED PRACTICE BETTER (at some point, when the student had some initial practice with individual problem types)

| Problem | n   |     |     |     | A   | nsw | er  |     |     |     |     |     | ler |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|         | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | oth |
| 1 + 1   |     | .05 | .86 |     | .02 |     | .02 |     |     |     |     | .02 | .04 |
| 1 + 4   |     |     |     |     | .11 | .61 | .09 | .07 |     |     |     | .02 | .11 |
| 1 + 5   |     |     |     |     | .13 | .16 | .50 | .11 |     | .02 | .02 |     | .05 |
| 2 + 2   | .02 |     | .04 | .05 | .80 | .04 |     | .05 |     |     |     |     |     |
| 2 + 3   |     |     | .04 | .07 | .38 | .34 | .09 | .02 | .02 | .02 |     |     | .04 |
| 2 + 4   |     | .02 |     | .07 | .02 | .43 | .29 | .07 | .07 |     |     |     | .04 |
| 4 + 1   |     |     | .04 | .02 | .09 | .68 | .02 | .02 | .07 |     |     |     | .07 |
| 5 + 1   |     |     | .04 |     | .04 | .07 | .71 | .04 | .04 |     | .04 |     | .04 |
| 5 + 4   |     |     |     |     | .11 | .21 | .16 | .05 | .11 | .16 | .04 |     | .16 |

### Associative Strengths for Simple Addition Problems 4-5 yr olds

#### **PRINCIPLES OF THE MEANINGFUL APPROACH**

• USE CONCRETE EXAMPLES, IMAGERY (to support understanding)

• WHEN A STUDENT HAS DIFFICULTY, DIAGNOSE CONCEPUTAL CONFUSION

• BUILD UP UNDERSTANDING BY RELYING ON VISUAL AND ENACTIVE REPRESENTATION (see examples in the next few slides)

### **TEACHING POSITIONAL NOTATION**

**Array of Beads - Concrete Representation** 



**Color Coded Labels - Intermediate Step** 



**Superimposed Labels** 



### **ADDITION WITH CARRYING**



### SAMPLE MATH "BUGS"

| I. Addition | - What's w | rong??? |   |    |  |
|-------------|------------|---------|---|----|--|
|             | 23         | 18      |   | 45 |  |
| +           | 14 +       | - 31    | + | 22 |  |
|             | 73         | 94      |   | 76 |  |

| II. Subtraction - | What's wrong??? |    |
|-------------------|-----------------|----|
| 23                | 34              | 41 |
| - 14              | - 16 -          | 22 |
| 11                | 22              | 21 |

#### MORE SAMPLE MATH "BUGS"

| III. Rounding | g off - What's Wro  | ng??? |        |
|---------------|---------------------|-------|--------|
| 45.254        | (to nearest tenth)  | 45.2  |        |
| 156.327       | (to nearest tenth)  | 156.4 |        |
| 45.254        | (to nearest hundred | lth)  | 45.25  |
| 156.327       | (to nearest hundred | lth)  | 156.33 |



### **Complex Arithmetic**

The Need for Genuine Understanding!

**Problem:** Estimate the answer to 12/13 and 7/8. You will not have time to solve the problem with paper and pencil.

| Answer     | <b>Age 13</b> | <b>Age 17</b> |
|------------|---------------|---------------|
| 1          | 7%            | 8%            |
| 2          | 24%           | 37%           |
| 19         | 28%           | 21%           |
| 21         | 27%           | 15%           |
| Don't Know | 14%           | 16%           |

### **Math Problem Solving**

The Need for Genuine Understanding! And Representational Fluency!

**Problem: "There are six times as many students as professors at this university."** 

$$6s = p \qquad vs. \qquad 6p = s$$

37% of freshmen engineering students at a major state university could not write the correct equation *representing* the situation.

# Constructivist Principles for Teaching Mathematics

#### Make math realistic and interesting

With appropriate prior knowledge, make students stretch their minds to solve problems



Make math curriculum socially interactive

# Learning and Cognition in the Content Areas



## How Do Scientists Think & Behave?

- They make careful observations
- They collect, organize and analyze data
- They measure, graph, and understand spatial relations
- They pay attention to and regulate their own thinking
- They know when and how to apply their knowledge to solve problems

## Teacher Challenge: Student Misconceptions

#### Problem: Moving object over a cliff

Consider a typical cartoon character who runs over a cliff and falls into the valley below. With a pencil, you should draw the path that the falling body will follow. Subjects' responses in black (A,B,C,D).



#### **CONFRONTING STUDENTS' MISCONCEPTIONS**

#### **Problem:** Moving object over a cliff

**Answers from High School and College Students** 

| Path A | 5%  | It will go straight for a distance and then go straight down ( <i>roadrunner path</i> )                   |
|--------|-----|-----------------------------------------------------------------------------------------------------------|
| Path B | 35% | It will go straight for a distance and then gradually arc down ( <i>impetus theory</i> )                  |
| Path C | 28% | It will arc downward, maintaining constant forward speed and increasing downward speed ( <i>correct</i> ) |
| Path D | 32% | It will fall straight down as soon as it leaves the edge of the cliff                                     |

## Teacher Challenge: Student Misconceptions



Teacher Challenge: Control of Variables Task Cross-Cultural Study – 7 Western Countries – 13 to 15 yr olds



14% of the students have mastered systematic testing of the effects of each variable – one at a time

# Strategies for Teaching Science

- Help students learn how to think like scientists
- Monitor students' misconceptions about science and working with them to develop more accurate conceptions
- Guide students in developing inquiry skills
- Teach science content as well
- Make science interesting by giving students opportunities to explore everyday science problems