Classifying Objects Based on Their Visual Similarity to Target Categories
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Abstract theories of human behavior have been developed that describ
Visual similarity relationships underlie a host of human be psychologically meaningful multidimensional spaces (#sh
haviors, and dgtermining thF:ese relationships is cruciti bo & Perrin, 1_988; Nosofsky, 1992), but thesg approachgs have
the understanding of these behaviors and the construction o used relatively simple patterns as stimuli so as to isolate
automated systems designed for human use. We conducted the relevant feature dimensions (for notable exceptioses, s
a large-scale web-based experiment in which subjects nank o (Oliva & Torralba, 2001; Schyns, Bonnar, & Gosselin, 2002;

dered random objects according to their visual similaotgh- . :
ject classes. We then constructed a computational model, us Zelinsky, Zhang, Yu, Chen, & Samaras, 2006)). The question

ing Adaboost with color, texture, and shape features, toqua  of how visually similar people believe a random object, such

tify the visual similarity between these objects and the tar : .
get classes, and to perform the same similarity ranking task 35 & coffee cup, is to a complex class of objects, such as teddy

The model and subjects showed good agreement in the objects bears, is largely unknown.
J(l;dg%d ttO t;e most an?tLeé}St Sllm”tar ttO the tagger: catefgo?es. Our goal in this study is to bridge the behavioral and com-
ur data also suggest that color, texture, and shape feature o o . N
are all useful for classification, and that the specific weigh puter vision communities by using methods of similarity es-
of these features depends on the target object class. Mareov  timation from computer vision to describe human visual sim-
‘é‘igssshogys ti?e\t/z}lgesgsts%?gt{gl;?a?rgO;?:lrgggif(i:gpgtrlnutj;?gaégﬁeee ilarity judgments. Behavioral similarity estimates wete o
jects (i.e., without positive samples) to recognize adirgets. tained from a web-based experiment in which participants
: y . , . , rated the visual similarity of random realistic objectsumt
Keywords: Cognitive science; Computer science; Concepts . . .
and categories; Machine learning; Computer simulation; Hu  Object classes, teddy bears and butterflies. A web expetimen
man experimentation. is perfect for this task, as a large number of subjects are re-
quired to obtain stable similarity estimates. We then used a

Introduction machine learning technique with multiple heterogeneoas fe

Knowing the similarity relationships between objects iy ke tures to similarly classify these objects into those most an
to understanding performance in many tasks. This is true fole@st like the target classes. By comparing similarity-esti
both human behavior and computer vision. The construct oftates from the human and model, we can evaluate the use-
similarity has been used to describe human behaviors randuIness of current state-of-the-art computer vision mefio
ing from attentional selection and visual search (Duncan &e@Pturing human visual similarity judgments, and possioly
Humphreys, 1989; Raymond, Shapiro, & Amell, 1995) to !earn more abogt the visual features used by humans in arriv-
change detection (Zelinsky, 2003), recognition (Ashby &Pe Nd at these estimates.
rin, 1988; Edelman, 1998) and categorization (Medin, Gold- Behavioral M ethodology
stone, & Gentner, 1993; Oliva & Torralba, 2001). Human similarity ratings were obtained using a
Establishing similarity relationships is also a core operaweb-based behavioral experiment (interested read-
tion in many object recognition methods in the computer vi-ers can participate in the actual experiment at:
sion literature. Here, similarity relationships are dissed  http://www.cs.sunysb.edu/"rankings/start.html). Soby
in the context of specific features, typically color (Swain & were 142 Stony Brook University students. Upon linking to
Ballard, 1991), texture (Dalal & Triggs, 2005; Lowe, 2004; the experiment, subjects were randomly assigned to either
Serre, Wolf, & Poggio, 2005), and shape (Belongie, Malik, & a teddy bear or butterfly/moth group; the two target classes
Puzicha, 2002; A. C. Berg, Berg, & Malik, 2005; Opelt, Pinz, used in this study. The experiment consisted of a training
& Zisserman, 2006). phase and a ranking phase. During training subjects were
Yet despite its importance to a wide range of fields, relashown 200 examples of either teddy bear or butterfly/moth
tively few attempts have been made to computationally deebjects (not both). This was done to familiarize subjects
scribe the features underlying human visual similaritygjud with the types of objects constituting the target class, as
ments. The above mentioned computational work has madeell as to expose them to the feature variability among these
great progress in quantifying visual similarity in termsaof objects. Except for the objects shown during training, and
variety of features, but these estimates have not been valihe instructions indicating the target class, subjectshim t
dated in terms of human behavior. Conversely, quantitativdear and butterfly experiments performed the identical task



ilarity between a given pair of color histogram featu@ll;

This s trial 1 oF 102 andCH,, was measured using tixé statistic:

Please rank each object according to its VISUAL SIMILARITY to a teddy bear. )
CHl(I) — CHz(I )]

A 2 [
! CH1,CHz) = . - 1
%’ = , X“(CHy 2) z CH1(i) + CHa(1) 1)
' ' ’V, whereCH (i) is the value oft" dimension.
! Scale Invariant Feature Transform (SIFT)
3 @ [ @ [ “ [ v [5 v The texture feature of an object was described by a set df loca
= SIFT descriptors applied at image coordinates indicated by
usem,thelgast,bmmm,bmm object an interest point detector. Following (Lowe, 2004), we leca

Figure 1: Screenshot of one trial in the visual similaritgka ized interest points by finding local extremes on Difference
] rclﬁ—Gaussian (DoG) maps. A SIFT feature for a point en-

ing phase of the web-based experiment. Subjects had to ra des gradient information (orientation and magnitude) fo
order the objects based on their visual similarity to teddy gracient 1 ; : ! gnitu

bears. A corresponding trial existed for subjects paritip all p|xe_|s within a 16x 1.6 image p?“?h su_rroundmg the Inter-
o : est point. Each patch is further divided into smaller regjon
ing in the butterfly ranking task.

with each subregion represented by an orientation histegra
The SIFT descriptor has been shown to be robust to rotation,
Similarity estimates were obtained during the rankingtranslation and occlusion (Lowe, 2004).
phase. Figure 1 shows a screen-shot of the ranking phaseTo estimate the similarity between a SIFT featPeand
for one representative teddy bear trial. Five nontargetabj g sample objec, we found miD(P,Q;), where{Q;} refers
were presented on each trial, and the subject’s task was t@ the set of SIFT features from sam@eandD(.) computes
rank order the objects by assigning each a rank score (1-3he Euclidean distance between a pair of SIFT features.
indicating its perceived visual similarity to the targeass Shape context
(either teddy bear or butterfly, depending on the condition)we represented shape using the global shape context feature
Note that a ranking task is preferable to having subjects asjescriptor (Belongie et al., 2002). For each image, we sam-
sign an independent similarity score to each object, as thipled a fixed number of edge points evenly distributed along
tends to produce many low similarity estimates due to subthe object’s contour. The distribution of these points wes d
jects not using the full range of the rating scale. A rankingscribed by a coarse histogram feature consisting of uniform
method avoids this problem by requiring, for each trial, anbins in log-polar space. The origin of the space was set to the
estimate of the least target-like object (rank of 1), the thoscenter of the image. By counting the number of edge points
target-like object (rank of 5), and three intermediatelyked  grouped by discretized log-distances and orientationsh ea
objects. histogram captures the global shape properties for a given
Each subject performed 100 ranking trials, yielding simi-sample. The similarity between shape context features was
larity estimates for 500 objects. These 100 trials were ranmeasured by(z distance, similar to the metric used for the
domly selected from a fixed set of 400 trials. Over subjectscolor histogram feature (Eq. 1).
71,000 separate similarity estimates were obtained foozooBoosting with heterogeneous features
common nontarget objects spanning a range of categoriem our method, each color histogram, SIFT, and shape con-
All of these objects were selected from the Hemera objectext feature obtained from positive training samples bezom
database, as were the target objects used in the butterfly/moa candidate feature that can be selected and used to classify
class. The teddy bear objects were obtained from (Cockrilltarget from nontarget objects. To select the most discrim-

2001). inative features for classification from this training see
) use a popular machine learning technique, AdaBoost (Freund
Computational M ethodology & Schapire, 1997). The application of AdaBoost, or boost-
We used color histogram features, texture features (SIFTJN9. refers to the general method of producing a very accu-
and global shape features in this study. rate prediction rule by combining relatively inaccuratkesd
of-thumb (Viola & Jones, 2001). In this study we use Ad-
Color histogram aBoost with heterogeneous features, as described in (Zhang

A histogram of hues was used to describe the global colovu, Zelinsky, & Samaras, 2005). This method is similar to
feature of an object, similar to the approach used by (Swai\daBoost, except that the different features are processed

& Ballard, 1991). Each sample image was first transformediependently. This means that separate similarity scoees ar
into the HSV color space; background (white) and achromaticomputed between each sample and each feature type, re-
pixels were excluded from the histogram by setting a threshsulting in separate feature-specific classifiers. Two flass

old on the saturation channel{8.15). The hue channel was were learned and used in this study; one discriminatingytedd
evenly divided into 11 bins, and each pixel's hue value wasears from non-bears, and the other discriminating butsrfl
assigned to these bins using binary interpolation. The finafrom non-butterflies. The original sources should be con-
color histogram was normalized to be a unit vector. The simsulted for additional details regarding the AdaBoost métho



Experimental results > 1 @ Human > ®Human

w
Behavioral data £ 4t 4 - tede
Subjects varied considerably in the objects they ranke@as b § 3 37
ing similar to the target classes. Figure 2 summarizes this gp 2 2 -
variability by showing the number of objects for each rank- § 1 1
ing, grouped by the level of agreement among subjects. Two <
patterns are evident from this analysis. First, and as éggdec 0 04

Least(1) Most (5) Least(1) Most (5)

the number of consistently ranked objects decreases as the
agreement criterion becomes stricter. For example, there Similarity to teddybears  Similarity to butterflies

were 150 objects that 60% of the subjects ranked as beinI‘-;]igure 3: Average human and model rankings for the least

most bear-llike, but only 33 of thgse objects were r_anked a‘ﬁarget-like and most target-like objects, based on a 60# lev
most bear-like by 80% of the subjects. Second, subjects wer agreement. Left panel, bear rankings; right panel, bilytte

most consistent in their rankings of the most target-like ob rankings. Error bars indicate one standard error of the mean
jects (rank 5), and second most consistent in their rankingEsEM).
of the least target-like objects (rank 1). There was geheral
less consistency among the objects ranked as neither most n@spectively; the corresponding scores for the most bkar-|
least target-like (ranks 2-4). Given these patterns, dikeu  objects were 4.49 and 4.10. For the butterfly/moth category,
guent analyses will only include those objects ranked most othe mean ranking scores for the least target-like objects we
least target-like based on a 60% level of subject agreement.67 and 1.91 for subjects and the model; the most target-
We chose this agreement criterion because it afforded a relike scores were 4.38 and 3.71. Differences between the leas
atively large number of objects while still yielding a s¢ati and most target-like objects were highly significant forrbot
tically significant level of consistency, f1 .005. Note also subjects and the model in both target classes (all 9001,
that subjects ranking objects for bear similarity were moreby two-tailed t-test). However, when the human and model
consistent in their estimates than subjects ranking abject  estimates were compared directly, we found that the average
butterfly similarity, a finding that may reflect greater vaila  model estimates fell outside of the 95% confidence intervals
ity in the butterfly/moth target class compared to teddy ear for the corresponding behavioral means. In general, human
Human and model similarity rankings ra_nkm_gs tend_ed to be more extreme compa_red to _the model,
. ] ~with slightly higher rankings for most target-like objeetsd
We used our multi-feature model to classify the ObjeCtSsnghﬂy lower rankings for least target-like objects.
ranked as most target-like (rank 5) and least target-l&sKr Figure 4 shows a more detailed breakdown of the model
1)_forthe bear and butte_rfly target classes._ Again, we lidnite rankings, by target category. As clearly indicated by the
this effort to only the objects ranked consistently by human,sssover interactions, our model was able to correctly dis
subjects, based on a 60% level of agreement. For each Ca’i‘?ﬁguish between the most target-like and least targetel
gory the model was trained on the 200 positive samples of tafcts. For the objects ranked least target-like by 60% of our
gets shown to subjects during the training phase of the beha‘éubjects, the model correctly assigned a rank of 1 to approx-
ioral experiment. For negative samples we used 800 randori%ately 50% of these objects. The chance probability of a
objects that were not used in the web ranking experiment. 4 ranking is .2, given the 5 objects per trial in the web ex-
There was good agreement between the objects selected Bgriment. The figure also shows a monotonic decrease in the
subjects as most and least target-like and the correspgndifyopapility of the model assigning a target dissimilar ebje
objects ranked by the model. Figure 3 illustrates this agreenigher rank. For example, the probability of the model mis-
ment by plotting the mean rankings for the most and least|assifying a least target-like object as target-simitank 4
target-like objects from Figure 2. For the teddy bear catey, 5) was only about .1. A similar pattern was found for the
gory, the mean ranking scores for the least bear-like abjeCmost target-like objects. The model ranked these objedis as
were 1.54 and 1.98 for the human subjects and the modelith high probability (.50 and .37 for the bear and butterfly
categories, respectively), and ranked these objects athl wi
low probability (.1 or less). Considering the fact that ugé
of the subjects failed to agree on these rankings, the titassi
cation rates generated by the model are highly represeatati
of human behavior.
—_— The above analyses demonstrated good agreement between
P Lo s a4 s our multi-feature model and human behavior with respect to
Human teddy bear rankings Human butterfly rankings visual similarity ranking, but are some features bettentha
Figure 2: The number of consistently ranked objects for dif-others in describing human behavior, and do these features
ferent levels of agreement. Left panel, bear rankings;trighdepend on the target category? To address these questions
panel, butterfly rankings. we conducted additional computational experiments in tvhic

——60% 70% =&=80%

Number of objects
©
g

Number of objects




a) Targers b) Colorlike c) Texturelike d) Shapelike

Figure 6: a) Representative bear and butterfly targets. p)eRentative objects ranked as most target-like by humbjests
and a version of our model using only a color histogram featay Objects ranked as most target-like by a texture-onligeho
d) Objects ranked as most target-like by a shape-only model.

we attempted to classify least target-like and most taiget- therefore be useful in deriving similarity estimates tosne
objects using either color histogram, SIFT, or shape cantexarget classes.

features, rather than a combination of the three. These re- Despite the demonstrated contribution of color, texture,
sults are shown in Figure 5, along with data from the com-and shape features to the task of similarity ranking, it is un
bined feature model for comparison. In general, models usdoubtedly the case that subjects used features in addition t
ing any single feature alone do not describe human behavidhese three when making their similarity estimates. Ona suc
as well as the full multi-feature model. There is also eviden feature is likely a semantic descriptor. Although subjects
for features contributing differently to the bear and bdilye  were instructed to base their judgments only on an object’'s
tasks. Shape features are most discriminative for the lagtar ¢ visual similarity to the target class, completely excluglge-
egory, and produce the closest agreement to the bear-like omantic similarity from such estimates is difficult. Figure 7
jects ranked by subjects. For butterflies the SIFT featui® washows some cases where semantic similarity may have influ-
most discriminative, which suggests that human subjeets reenced the behavioral ranking. These objects were rejected
lied most on texture when ranking objects as either least oby the model but ranked as most target-like by human sub-
most butterfly-like. Interestingly, the contribution ofloo  jects, despite having different shape, color, and textaee f
was relatively minor in the model’s butterfly rankings. This tures. If semantic factors affected these similarity eatés,

may be due to the fact that the color histogram feature esthis might explain why the model failed to correctly clagsif
timates similarity by computing distances between digtrib these objects as target-like. However, a strength of our ap-
tions of hues, which fails to capture the color variabilityan ~ proach is that, as new features are discovered and new com-
object that may be diagnostic of the butterfly object class. putational feature descriptors become available, theybean

Figure 6 shows representative samples illustrating featur €asily integrated into our multi-feature model.
specific contributions to similarity estimates. Teddy Isear : ; :
and bear-like objects are shown in the top row; butterfliesLearnlng from target-like objects
and butterfly-like objects are shown in the bottom row. All To further validate our computational method of estimating
of the nontargets were ranked as most target-like by both theisual similarity, we analyzed the false positive errorsima
human subjects and a version of the model using color hisby our multi-feature model. If our classifiers truly learned
togram (pane| b), SIFT (pane| C), and shape context featurége features of “bearness” and “butterflyness”, we would ex-
(panel d), individually. Clearly, all three feature typeape  Pect higher false positive rates to the most target-likectsj
ture dimensions of “bearness” and “butterflyness”, and migh 55
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least target-like and most target-like by human subjeat$t L model. Left panel, teddy-bear model rankings; right panel
panel, bear rankings; right panel, butterfly rankings. butterfly model ran,kings ’ ’




rates for both target classes were better than the randaem cla
sification baseline (green dashed line). For comparison, we
also show data from classifiers trained on positive samples
and tested on the same dataset. Predictably, these EERs were
even higher, especially for the teddy bear target class (EER

MmN

3l B il = 99% for teddy bears, EER = 95% for butterflies). These
) results provide the first implementation proof that categgor
q e of visually complex targets can be recognized by classifiers
— ﬂ trained entirely without positive samples of the targessés.
They also provide proof positive that “bearness” and “butte
flyness” are learnable visual categories.
b) Butterfly-like?
Figure 7: Objects ranked as target-like by human subjeats th Conclusions and future work

might have been influenced by semantic similarity. The estimation of visual similarity is a core operation innya

ranked by human subjects. Using the same training and te t[1_uman and computer systems. In this study we collected a
i SI rge number of behavioral similarity estimates between ra

ing sets described under the computational methods sectioﬁ‘ biect d two t ol Th h tational
we tested this hypothesis by adjusting the classifier thresh om objects and two target classes. fnrough comptiationa
olds so that they accepted 20% of random objects as pos?)_(perlments using the Adaboost machine Iearn_mg method
tive targets. Such an adjustment was necessary because Fh heterogeneous features, we shqwed that IS|mpIe color,
texture, and shape features can describe the objects rasked

classifiers recognized both categories with equal erresrat t and least t t-like by h biects. We al
greater than 95%, thereby providing too few false positivegnOS and least target-like by human Subjects. e also pro-
ided evidence for a category-specific weighting of these fe

to analyze. We then reanalyzed the most and least targe}[f- dd trated that th b d to define |
like objects using this more liberal classification thrddho ures, and demonstrated that th€y can be used to detine fearn-

and observed the false positive rates (FPRs). These resuf'i"g le classes of target-like objects. Although we have ne rea

are shown in Figure 8 for the bear and butterfly classes, as" to dt_)ellt_evg th?t A;:ial?oost qtgscr|b (;,-s- hlov;/ huThzllasﬂ_actually
function of agreementlevel. The FPR for objects ranked mo.slte"’lr.n Iscriminative features, 1 1S certainly true thatalim-
ative features are used when making similarity judgments

target-like by human subjects was above 40%, over twice the

20% FPR for random nontargets. Conversely, the FPR fo?ndthatthese features are largely unknown for real-wdrid o

objects ranked least target-like by human subjects was a ects. Our study is a first step towards discovering and quan-

proximately 5%, well below the FPR for random objects. To- ifying the;e pehawora!ly—relevaqt feqturgs.
gether, these patterns suggest another point of agreement b These fmdmg_s_have Important |mpl|(_:a_t|ons for_both human
tween our model and human behavior; the objects ranked a?snd computer vision systems. Determining the visual festur

most similar to the target categories are the same objeatts thused to code complex object classes is fundamental to under-
are most likely to be misclassified by the model standing a host of human behaviors in the real world. For ex-

The previous analyses suggested that “bearness” and b mple, most day—to-dgy search tgsks are categorical;atés r
terflyness” may be learnable classes, which raises thguntri or us to have a preview specifying a target's exact appear-

ing possibility that actual teddy bear and butterfly targetsance' Nevertheless, search in these situations is guidbd to

might be recognized by classifiers trained entirely on beargategorically-defined target (Yang & Zelinsky, 2006; Zhang

like and butterfly-like nontargets. Note that this is verfs di Yang, Samaras, & Zellnsky, 2096)‘ What are the features of
ferent from a standard category learning problem, in which éhe target class used k.)y this gwdanceloperatlpn? Th? durren
classifier is trained from positive samples of the actugetr Study suggests potential answers to this question, atlagst

class. Is it possible to learn a classifier for an object aateg {espect tl? thl? (tje(zdy t_>ear ahncihbuttt(:]rfly t?rget catego_l;l_esf. Fu
without any positive training samples? ure work will determine whether the category-specific fea-

We addressed this question by training classifiers on the
most target-like objects from the behavioral rankings. As B Rank 1 Ranks TRt
before, the training set was composed of the most bear-likg 40
and butterfly-like objects based on a 60% level of agreement
among subjects, as well as random objects from the web ex N N SN B U N e |
periment which were used as negative samples. The testinf.:.;l0
set consisted of 100 actual teddy bear and butterfly targets, . [ |
and random objects that were not used in the web experiment. 70% 70% a0%
The results from this experiment are shown in Figure 9. Clas-_. Teddy bear agreement . Butterfly agreement
sifiers trained on target-like objects achieved equal eates Figure 8: Model false positive rates for the least and most

(EERS) of 92% and 70% for the teddy bear and butterfly tar{arget-like objects, as ranked by subjects at differengltev
get classes, respectively (red data). Clearly, the claaitin of agreement. The overall FPR for the classifiers was set to
20%, indicated by the dashed green lines.
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