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Visual similarity effects in categorical search
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We asked how visual similarity relationships affect search guidance to categorically defined targets (no visual preview).
Experiment 1 used a web-based task to collect visual similarity rankings between two target categories, teddy bears and
butterflies, and random-category objects, from which we created search displays in Experiment 2 having either high-
similarity distractors, low-similarity distractors, or “mixed” displays with high-, medium-, and low-similarity distractors.
Analysis of target-absent trials revealed faster manual responses and fewer fixated distractors on low-similarity displays
compared to high-similarity displays. On mixed displays, first fixations were more frequent on high-similarity distractors
(bear = 49%; butterfly = 58%) than on low-similarity distractors (bear = 9%; butterfly = 12%). Experiment 3 used the same
high/low/mixed conditions, but now these conditions were created using similarity estimates from a computer vision model
that ranked objects in terms of color, texture, and shape similarity. The same patterns were found, suggesting that
categorical search can indeed be guided by purely visual similarity. Experiment 4 compared cases where the model and
human rankings differed and when they agreed. We found that similarity effects were best predicted by cases where the two
sets of rankings agreed, suggesting that both human visual similarity rankings and the computer vision model captured
features important for guiding search to categorical targets.

Keywords: visual search, eye movements, categorical guidance, visual similarity, computer vision
Citation: Alexander, R. G., & Zelinsky, G. J. (2011). Visual similarity effects in categorical search. Journal of Vision, 11(8):9,

1-15, http://www.journalofvision.org/content/11/8/9, doi:10.1167/11.8.9.

Introduction

You have probably had the experience of searching
through a crowded parking lot and locating several other
vehicles of the same color or model before finally finding
your car. This is an example of visual similarity affecting
search; the presence of these target-similar distractors made
it harder to find the actual thing that you were looking for.

Such visual similarity effects have been extensively
studied in the context of search, with the main finding from
this effort being that search is slower when distractors
are similar to the target (e.g., Duncan & Humphreys,
1989; Treisman, 1991). Models of search have also relied
extensively on these visual similarity relationships (e.g.,
Hwang, Higgins, & Pomplun, 2009; Treisman & Sato,
1990; Wolfe, 1994; Zelinsky, 2008). Despite their many
differences, all of these models posit a very similar
process for how similarity relationships are computed
and used; the target and scene are represented by visual
features (color, orientation, etc.), which are compared to
generate a signal used to guide search to the target and to
target-like distractors in the scene. In general, the more
similar an object is to the target, the more likely that
object will be fixated (see also Eckstein, Beautter, Pham,
Shimozaki, & Stone, 2007; Findlay, 1997; Tavassoli, van
der Linde, Bovik, & Cormack, 2009; Zelinsky, 2008).

All of these models, however, assume knowledge of the
target’s specific appearance in the creation of this
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guidance signal. This assumption is problematic, as it is
often violated in the real world. Descriptions of search
targets are often incomplete and lacking in visual detail;
exact knowledge of a target’s appearance is an artificial
situation that typically exists only in the laboratory. Par-
ticularly interesting are cases in which a target is defined
categorically, as from a text label or an instruction (i.e., no
picture preview of the target). Given the high degree of
variability inherent in most categories of common objects,
search under these conditions might have limited visual
information about a target that could be confidently com-
pared to a scene to generate a guidance signal. Indeed,
a debate exists over whether categorical search is guided
at all, with some laboratories finding that it is (Schmidt &
Zelinsky, 2009; Yang & Zelinsky, 2009) and others sug-
gesting that it is not (e.g., Castelhano, Pollatsek, & Cave,
2008; Wolfe, Horowitz, Kenner, Hyle, & Vasan, 2004; see
also Vickory, King, & Jiang, 2005).

In the present study, we ask not only whether
categorical search is guided but also whether categorical
guidance to realistic targets is affected by target—distractor
visual similarity. Guidance from a pictorial preview is
known to decrease with increasing visual similarity
between a target and distractors; does this same relation-
ship hold for categorically defined targets? It may be the
case that categorical target descriptions are dominated by
nonvisual features, such as semantic or functional proper-
ties of the target category.' There is an ongoing debate in
the literature as to whether eye movements can be guided
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by semantic information, with some researchers reporting
guidance for even very early eye movements (Becker,
Pashler, & Lubin, 2007; Bonitz & Gordon, 2008; Loftus
& Mackworth, 1978; Rayner, Castelhano, & Yang, 2009;
Underwood & Foulsham, 2006; Underwood, Templeman,
Lamming, & Foulsham, 2008) and others showing that early
eye movements are not guided by semantic information
(De Graaf, Christiaens, & d’Ydewalle, 1990; Henderson,
Weeks, & Hollingworth, 1999; V6 & Henderson, 2009). If
semantic factors either cannot affect early eye movements
or can do so only weakly and categorical search relies on
these factors, then guidance to these targets may be weak
or even nonexistent, potentially explaining why some
researchers have found evidence for categorical guidance
and others have not. To the extent that categorical search
does use nonvisual features, effects of target—distractor
visual similarity would not be expected. However, if tar-
get categories are represented visually, one might expect
the same visual target—distractor similarity relationships
demonstrated for target-specific search to extend to cate-
gorical search (see Duncan, 1983, for a similar question
applied to simple stimuli).

It is unclear how best to manipulate visual similarity in
the context of categorical search. Traditional methods of
manipulating target—distractor similarity by varying only a
single target feature are clearly suboptimal, as realistic
objects are composed of many features and it is impos-
sible to know a priori which are the most important. This
problem is compounded by the categorical nature of the
task; the relevance of a particular target feature would
almost certainly depend on the specific category of
distractor to which it is compared. It is not even known
how best to derive specific target features for such a com-
parison; should features be extracted from a particular
exemplar that is representative of the target category or
should an average be obtained from many target exem-
plars (see Levin, Takarae, Miner, & Keil, 2001; Yang &
Zelinsky, 2009)? Likewise, even if the relevant feature
dimensions were known, the similarity metric used within
a feature dimension may itself be categorical (Wolfe,
Friedman-Hill, Stewart, & O’Connell, 1992) and, there-
fore, largely unknown.

In light of the difficulties associated with directly
manipulating the specific features underlying visual
similarity, we opted in Experiment 1 for a more pragmatic
and holistic approach—to use ratings of visual similarity
collected from subjects.” Using these estimates of visual
similarity, Experiment 2 asked whether the visual simi-
larity relationships known to affect search for specific
targets also extends to categorical search. Previous argu-
ments for the use of visual features to guide categorical
search appealed to evidence showing the preferential
direction of initial saccades to categorical targets (Schmidt
& Zelinsky, 2009; Yang & Zelinsky, 2009). However,
although such an early expression of guidance makes an
influence of semantic target—distractor similarity less
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likely, such nonvisual contributions to this behavior cannot
be ruled out completely. More compelling evidence for
the visual direction of categorical search would be the
demonstration of an effect of target—distractor visual simi-
larity on categorical guidance; providing this evidence
was the primary goal of Experiment 2. Experiment 3
replicated Experiment 2 using search displays assembled
from similarity estimates obtained from a computer vision
model (rather than from behavioral ratings).3 We did this
in order to guarantee the use of purely visual features
in any observed relationship between target—distractor
similarity and categorical search guidance. Finally, in
Experiment 4, we explored cases in which the behavioral
similarity estimates and the computer vision similarity esti-
mates agreed or disagreed. We did this in hopes of learning
whether these different similarity measures use different
features to guide gaze in a categorical search task.

Experiment 1: Web-based

similarity rankings

The goal of Experiment 1 was to obtain visual similarity
estimates between random real-world objects and the
“teddy bear” and “butterfly” categories, for the purpose of
using these estimates to select distractors in further search
experiments. A web-based task was used to collect these
visual similarity estimates, due to the relatively large
number of subjects that we anticipated needing to obtain
stable similarity estimates between random objects and
these target categories.

Methods
Participants

One hundred and forty two students from Stony Brook
University participated in exchange for course credit.

Stimuli

The two target categories were teddy bears, images
obtained from Cockrill (2001), and butterflies (including
some moths), images obtained from the Hemera collection
(Hemera Photo-Objects). Similarity ratings were collected
for 2000 nontarget objects representing a broad range of
categories. These images were also selected from the
Hemera collection.

Procedure

Upon following a link to the experiment, subjects were
randomly assigned to either a butterfly target category or a
teddy bear target category, and then participated in a
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Figure 1. Screenshot of a teddy bear trial from Experiment 1.

training phase and a ranking phase of the experiment.
During training, subjects were shown 200 sample images
from their assigned target category (either teddy bear or
butterfly). This was done to familiarize them with the
types of objects that constituted the target category and
with the feature variability among these objects. In the
ranking phase, subjects were shown groups of five
nontarget objects randomly selected from the 2000 object
set and asked to rank order these five objects from most
visually similar (5) to least visually similar (1) relative to
the target category. Figure 1 shows a screenshot of the
ranking phase for one representative teddy bear trial. Each
subject completed 100 ranking trials. Given our use of
random objects, the task of rank ordering the objects was
preferable to the task of assigning an independent
similarity score to each object, as the latter task would
likely have resulted in a large number of “very dissimilar”
responses. Importantly, subjects were instructed to use
only visual similarity and to disregard categorical or
associative relationships between the objects and the
target category when making their judgments.

Results and discussion

Subjects produced a total of 71,000 butterfly and teddy
bear similarity estimates for 2,000 different objects. The
rankings for each object varied substantially between
subjects (see Figure 2). Rankings for the highest level of
similarity (rank 5) were the most consistent for both teddy
bears and butterflies, followed by the rankings for the least
target-like objects (rank 1). Subjects were much more
likely to agree on extreme similarity rankings than on
intermediate ones. In addition, subject rankings were more
consistent for teddy bears than for butterflies. This
difference in consistency between the two target catego-
ries might be due to teddy bears having a more
prototypical color than butterflies (many were brown) or
to the butterfly object class being in general more variable.

Figure 2 also shows that the adoption of stricter criteria
for subject agreement resulted in fewer consistently
ranked objects. To ensure that sufficient stimuli would
be available to assemble trials in our search tasks, we
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Figure 2. The number of objects corresponding to 60%, 70%, and
80% levels of inter-subject agreement for each of the five visual
similarity rankings (1 = least similar; 5 = most similar). (A) Teddy
bears. (B) Butterflies.
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adopted an inter-subject consistency of 60% or more when
selecting high-similarity and low-similarity objects for use
in Experiment 2.

Experiment 2: Searching through

human-ranked distractors

In Experiment 2, we selected ranked objects from
Experiment 1 (referred to as “distractors” throughout the
rest of the paper) and placed these into search displays in
order to test whether the visual similarity relationships
known to affect previewed search also affect categorical
search. While previous work has shown that subjects prefer-
entially fixate the targets in categorical search (Schmidt &
Zelinsky, 2009; Yang & Zelinsky, 2009), a demonstration
that subjects also preferentially fixate target-similar dis-
tractors would indicate that eye movements are preatten-
tively guided to the features of the target category. If
subjects’ eye movements are preferentially directed to
visually target-similar items, this would provide evidence
that this categorical guidance is due to visual factors rather
than semantic factors or other nonvisual information.

We were also interested in determining whether explicit
visual similarity judgments are predictive of effects of
target—distractor visual similarity on categorical search.
Search guidance is a largely implicit process and can be
expressed in even the first search saccade (e.g., Chen &
Zelinsky, 2006); the task of assigning rankings to objects
in a web experiment is comparatively slow and far more
explicit. Do these two tasks use fundamentally different
sources of information, or can visual similarity estimates
obtained from explicit judgments be useful in describing
guidance during search? Answering this question was a
secondary goal of this experiment.

If categorical search is guided by target—distractor visual
similarity, and if this relationship can be captured by explicit
similarity judgments, we would expect a relatively high
proportion of initial saccades to high-similarity distractors
and relatively few initial saccades to low-similarity
distractors. However, if categorical guidance is mediated
by nonvisual factors, or if the visual similarity estimates
obtained from an explicit task cannot be extended to search,
we would expect no effect of our similarity manipulations
on overt search guidance or manual search efficiency.

Methods
Participants

Twenty-four students from Stony Brook University
participated in exchange for course credit, none of whom
participated in Experiment 1. All subjects reported normal
or corrected-to-normal vision.
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Stimuli and apparatus

Gaze position was recorded using an SR Research
EyeLink II eye tracking system. This eye tracker is video-
based and has a sampling rate of 500 Hz and a spatial
resolution of ~0.2°. Target-present/absent search deci-
sions were made using a GamePad controller connected to
a USB port. Head position and viewing distance were
fixed at 72 cm from the screen with a chin rest. Search
arrays were displayed on a flat-screen CRT monitor at a
resolution of 1024 x 768 pixels (subtending 28° x 21°)
using a refresh rate of 85 Hz.

The two target categories were again teddy bears and
butterflies, the same images shown to subjects during the
training phase in Experiment 1. The distractors were also
selected from the pool of objects ranked in Experiment 1
based on their visual similarity estimates to the two target
categories. The 1-5 ranking was used to assign distractors
to three different similarity levels per target category
(teddy bear or butterfly). Distractors with a consistent
ranking of “1” were considered “low similarity”, and
distractors with a consistent ranking of “5” were consid-
ered “high similarity”. See Figure 3 for representative
examples of teddy bear and butterfly targets, as well as
objects rated as being low and high in visual similarity to
these two target categories. Consistency for both low-
similarity and high-similarity distractors was based on a
60% level of inter-subject agreement. Due to the relatively
low level of inter-subject agreement for objects given
rankings 2—4 (see Figure 2), we refer to these objects and
objects having less than 60% inter-subject ranking agree-
ment as “medium similarity” throughout the remainder of
the paper. Objects were normalized for size, with the
mean object size subtending ~2.8° of visual angle.

Procedure

Half of the subjects searched for a teddy bear target,
while the other half searched for a butterfly target. This
search was categorical; subjects were not shown a specific
bear or butterfly target preview prior to each search trial.
Rather, subjects were told the target category at the start
of the experiment. They were also shown examples of the
target category, none of which were used as actual targets
in the experimental trials.

Each trial began with the subject fixating a central dot
and pressing a button on the controller to initiate the
search display. The search display consisted of six evenly
spaced objects arranged on an imaginary circle with a
radius of 300 pixels (8.4°) relative to the center of the
screen. On target-present trials (50%), one object was either
a bear or a butterfly, depending on the condition, and the
other five objects were randomly selected distractors. On
target-absent trials (50%), distractors were selected based
on the similarity rankings from Experiment 1. Each object
was repeated only once throughout the experiment and
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Figure 3. Representative target and nontarget objects. (A) Teddy bears. (B) Butterflies. (C) High similarity to teddy bears. (D) Low
similarity to teddy bears. (E) High similarity to butterflies. (F) Low similarity to butterflies.
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was never repeated in the identical context (i.e., a repeated
target appeared with different distractors).

There were three target-absent conditions: 8 high-
similarity trials (all distractors were high-similarity items,
with respect to the target category), 8 low-similarity trials
(all distractors were low-similarity items, with respect to
the target category), and 24 “mixed” trials, where two
distractors were selected from the high-similarity category,
two from the low-similarity category, and two from the
medium-similarity category. The high- and low-similarity
conditions were included to determine whether visual simi-
larity affects search accuracy and manual reaction times
(RTs). The mixed condition allowed us to directly examine
whether overt search was guided differentially to distractors
depending on their similarity to the target category.

Target presence/absence and similarity condition were
within-subject variables, and both were randomly inter-
leaved throughout the experiment. Subjects were asked to
make their present/absent judgments as quickly as pos-
sible while maintaining accuracy. Accuracy feedback was
provided following each response.

Results and discussion

As the similarity manipulation was limited to the target-
absent trials, analyses were restricted to these data. Errors
were less than 6% in all conditions and were excluded
from all subsequent analyses. This low false positive rate
means that subjects did not confuse the high-similarity
distractors for targets (e.g., a stuffed bunny distractor was
not mistakenly recognized as a teddy bear).

RTs were longest in the high-similarity condition and
shortest in the low-similarity condition, with the mixed
condition yielding intermediate RTs (Table 1). These
effects of similarity were significant for both butterfly
targets (F(2,22) = 46.87, p < 0.001) and for bear targets
(F(2,22) = 53.85, p < 0.001). Post hoc t-tests with
Bonferroni correction showed slower RTs in the high-
similarity condition relative to the mixed condition (p <
0.01 for both teddy bears and butterflies) and faster RTs in
the low-similarity condition relative to the mixed con-
dition (p < 0.001 for both teddy bears and butterflies).

The number of distractors fixated during target-absent
search also differed between the similarity conditions,
and this again occurred for both butterfly (£#(2,22) = 30.41,
p < 0.001) and bear targets (F(2,22) = 59.55, p < 0.001).

Experiment 2 Experiment 3

Butterfly Bear Butterfly Bear
High 1.17 (0.06) 1.48 (0.14) 1.59 (0.13) 1.24 (0.15)
Mixed  0.97 (0.06) 1.15(0.11) 1.25(0.10) 1.07 (0.15)
Low 0.82 (0.05) 0.84 (0.08) 0.92 (0.09) 0.74 (0.09)

Table 1. Manual RTs (seconds) by similarity condition and target
category in Experiments 2 and 3. Note: Values in parentheses
indicate one standard error.
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Figure 4. Percentage of mixed condition trials in which the first
object fixated was ranked as having a low, medium, or high target—
distractor similarity for (A) Experiment 2 and (B) Experiment 3.
Error bars show one standard error. Dashed lines indicate chance.

More distractors were fixated on high-similarity trials
(3.16 £ 0.23 for bears, 2.50 £ 0.36 for butterflies) compared to
either mixed trials (2.53 = 0.24 for bears, p < 0.01; 1.83 +
0.31 for butterflies, p < 0.001) or low-similarity trials
(1.51 £0.23 for bears, p < 0.001; 1.29 + 0.26 for butterflies,
p < 0.001), and more distractors were fixated on mixed
trials than on low-similarity trials (p < 0.001 for bears and
p < 0.01 for butterflies). As distractor similarity to the
target increased, so did the number of fixations on these
distractors. All of these patterns are consistent with the
suggestion that visual similarity rankings are predictive of
search efficiency.

One of the most conservative measures of search
guidance is the first fixated object—the object looked at
first following search display onset. Analysis of first object
fixations on the mixed condition trials revealed significant
effects of our similarity manipulation for both the teddy
bear (F(2,22) = 30.15, p < 0.001) and butterfly (F(2,22) =
10.13, p < 0.01) search tasks. Consistent with the RT
analyses, we found that distractor similarity to the target
category determined the type of distractor that was first
fixated (Figure 4A). High-similarity distractors were more
often fixated first compared to medium-similarity distrac-
tors (p < 0.01 for bears and p = 0.05 for butterflies), which
were more often fixated first compared to low-similarity
distractors (p < 0.01 for bears and butterflies). Moreover,
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first fixations on high-similarity distractors were well above
chance (#(11) = 4.70, p < 0.01 for bears; #(11) = 7.04, p <
0.001 for butterflies), and first fixations on low-similarity
distractors were well below chance (#(11) = 18.89, p <
0.001 for bears; #(11) = 11.90, p < 0.001 for butterflies),
indicating that initial saccades were guided toward target-
similar distractors and away from target-dissimilar distrac-
tors. We also analyzed the latencies of these initial saccades
to see whether these patterns could be attributed to speed—
accuracy trade-offs, but none were found; initial saccade
latencies did not reliably differ between the similarity con-
ditions for either butterfly (#(2,22) = 1.51, p = 0.24) or bear
targets (F(2,22) = 0.41, p = 0.65). The observed effects of
visual similarity reflect actual changes in search guidance.

Two conclusions follow from these data. First, catego-
rical search guidance is affected by target—distractor visual
similarity. As the visual similarity between a distractor and a
target category increased, search efficiency decreased. This
decreased efficiency is due to distractors becoming more
distracting, as evidenced by an increase in the number of
first fixations on the high-similarity distractors. More gener-
ally, this finding adds to the growing body of evidence
suggesting that categorical search is indeed guided (Schmidt
& Zelinsky, 2009; Yang & Zelinsky, 2009), a question that
had been the topic of debate (Castelhano et al., 2008; Wolfe
et al., 2004). Not only is categorical search guided, it is
guided by matching visual features of the search objects to
a visual representation of the target category.

The second conclusion following from these data is that
explicit visual similarity rankings obtained from a web
task are highly predictive of categorical search. Given the
dramatic differences between these tasks, this finding is
surprising. Judgments in the web task were highly delib-
erative. In piloting, a subject was observed agonizing over
whether a wooden box or a backpack was visually more
similar to a teddy bear. These highly explicit similarity
judgments can be contrasted with the largely implicit visual
similarity computations driving search guidance. Whereas
the web-based judgments could be measured in seconds,
effects of similarity on search guidance appeared almost
immediately, at least within the first 199 ms following search
display onset (the mean latency of initial saccades in this
experiment). Our data suggest a common thread between
these two decisions. Regardless of whether a visual
similarity relationship had to be completed in time for an
initial eye movement, or the opportunity existed to deliber-
ate on this relationship for an extended period, the same
features seem to have been represented and compared.

Experiment 3: Searching through

model-ranked distractors

Were subjects from Experiment 1 confining their simi-
larity judgments to purely visual dimensions? The fact
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that this was the instructed task does not guarantee that
nonvisual factors were not creeping into the similarity
judgments, raising the possibility that these factors, and
not visual similarity, were responsible for the categorical
guidance observed in Experiment 2. Experiment 3
addressed this possibility.

It is unclear how best to separate visual from nonvisual
factors in estimates of similarity (Medin, Goldstone, &
Gentner, 1993). Even when search stimuli are oriented
bars with no compelling semantic properties, semantic
distinctions might still influence perceptual decisions
(Wolfe et al., 1992). The task of separating these factors
using purely behavioral methods is even more daunting in
the present study, as our stimuli are realistic objects
having an untold number of visual and semantic dimen-
sions. Previous research manipulated semantic factors
while matching objects on visual dimensions (e.g., Bonitz
& Gordon, 2008; Dahan & Tanenhaus, 2005), but this
matching was primarily limited to size and/or shape and
relied heavily on the subjective decisions of the experi-
menters as to whether objects were matched or not. Still
other research determined that effects of semantic manip-
ulations were not likely due to visual factors, such as
bottom-up salience (Becker et al., 2007; V6 & Henderson,
2009). However, these studies did not tease apart semantic
from visual factors with regard to the target-distractor
similarity relationships guiding search.

In Experiment 3, we take a different approach to this
problem—turning to the computer vision literature to
obtain target—distractor similarity estimates. Recent years
have seen considerable success in the development of
automated methods for the detection of object categories
in realistic scenes (see Everingham, Van Gool, Williams,
Winn, & Zisserman, 2009), a task with obvious relevance
to categorical visual search. At the core of these methods
is the computation of visual similarity relationships
between images of scenes and features extracted from
training exemplars of a target category. These similarity
relationships are potentially useful for our current pur-
pose, as they provide estimates of purely visual similarity
between distractors and a categorically defined target, free
from any contamination by semantic properties. Whereas
the similarity estimates collected in Experiment 1 may
have been based on some mix of visual and nonvisual
information, the similarity estimates obtained from a com-
puter vision method are undeniably exclusively visual.

To obtain these purely visual similarity estimates, we
used the computer vision method described in Zhang,
Samaras, and Zelinsky (2008). This model works by having
multiple visual features contribute flexibly and indepen-
dently to target classification (see also Zhang, Yu, Zelinsky,
& Samaras, 2005) and has already been successfully applied
to the identical target and distractor objects used in the
present study (Zhang et al., 2008). Specifically, it was
used to successfully classify the high-similarity and low-
similarity objects from Experiment 1 with respect to both
the teddy bear and butterfly object classes. This makes it
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an obvious choice for our goal of relating computer-
vision-based similarity estimates to search guidance; not
only was this method able to learn classifiers to discrim-
inate our target categories from random objects, but these
classifiers were also shown to be successful in capturing
human visual similarity relationships between these ran-
dom objects and the bear and butterfly target categories.*

To the extent that Zhang et al.’s (2008) model is
successful in capturing human visual similarity relation-
ships, and to the extent that these similarity estimates
extend to a search task, then displays constructed from
high-similarity or low-similarity distractors, as rated by
the model, should produce the same patterns of guidance
found in Experiment 2. Initial saccades should be prefer-
entially guided to high-similarity distractors, and prefer-
entially guided away from low-similarity distractors, with
guidance to medium-similarity distractors falling between
these two levels. Replicating these patterns in the context
of new search displays, assembled using the purely visual
similarity estimates from a computer vision model, would
offer converging evidence for our claim that visual
similarity affects categorical search. Of course, failing to
replicate these patterns would weaken this claim and would
raise concerns that the evidence for guidance reported in
Experiment 2 might have been due to semantic, associative,
or other nonvisual sources of information.

Computational methods

The computational model used here combines color
histogram features (Swain & Ballard, 1991), texture fea-
tures (the Scale-Invariant Feature Transform (SIFT);
Lowe, 2004), and global shape context features (Belongie,
Malik, & Puzicha, 2002) with a well-studied machine
learning technique (AdaBoost; Freund & Schapire, 1997)
to create teddy bear and butterfly classifiers.

A histogram of hues was used to describe a global color
feature of an object, similar to the approach used by
Swain and Ballard (1991). Each sample image was first
transformed into the HSV color space; background (white)
and achromatic pixels internal to an object were excluded
from the histogram by setting a threshold on the saturation
channel (§ < 0.15). The hue channel was evenly divided
into 11 bins, and each pixel’s hue value was assigned to
these bins using binary interpolation. The final color histo-
gram was normalized to be a unit vector. The similarity
between a given pair of color histogram features, CH1 and
CH2, was measured using the y* statistic:

s e -son( (540207,

(1)

where CH(i) is the value of the ith dimension.
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The texture feature consisted of a set of local Scale-
Invariant Feature Transform (SIFT) descriptors applied at
image coordinates indicated by an interest point detector.
Following Lowe (2004), interest points were selected by
finding local extremes on Difference-of-Gaussian (DoG)
maps. A SIFT feature localized at each point encoded
gradient information (orientation and magnitude) for all
pixels within a 16 x 16 image patch surrounding a given
interest point. Each patch was further divided into smaller
regions, with each subregion represented by an orientation
histogram. The SIFT descriptor has been shown to be robust
to rotation, translation, and occlusion (Lowe, 2004). To
estimate the similarity between a SIFT feature, P, and a
sample object, S, we found minD(P, Q;), where {Q;} refers
to the set of SIFT features from sample S, and D()
computes the Euclidean distance between a pair of SIFT
features.

Shape was represented using the global shape context
feature descriptor (Belongie et al., 2002). For each image,
a fixed number of edge points evenly distributed along the
object’s contour were sampled. The distribution of these
points was described by a coarse histogram feature
consisting of uniform bins in log-polar space. The origin
of the space was set to the center of the image. By
counting the number of edge points grouped by discrete
log distances and orientations, each histogram captured
the global shape properties for a given object. The simi-
larity between shape context features was measured by y°
distance, similar to the metric used for the color histogram
feature (Equation 1).

Each color histogram, SIFT, and shape context feature
obtained from positive training samples was used as a can-
didate feature that could be selected and used to classify
target from nontarget objects. To select the most discrim-
inative features for classification from this training set, a
popular machine learning technique was used—AdaBoost
(Freund & Schapire, 1997). The application of AdaBoost,
or boosting, refers to the general method of producing a
very accurate prediction rule by combining relatively
inaccurate rules of thumb (Viola & Jones, 2001). In this
study, AdaBoost with heterogeneous features was used, as
described in Zhang et al. (2005). This method is similar to
AdaBoost, except that the different features are processed
independently. This means that separate similarity scores
are computed between each sample and each feature
type, resulting in separate feature-specific classifiers. Two
classifiers were learned and used in this study, one dis-
criminating teddy bears from nonbears and the other
discriminating butterflies from nonbutterflies. The original
sources should be consulted for additional details regard-
ing the AdaBoost method.

Distractors were ordered based on how well they fit the
classifier. This resulted in the creation of two rank-ordered
lists, one indicating distractor visual similarity to teddy
bears and the other to butterflies. To create target—
distractor similarity conditions analogous to those used
in Experiment 2, we divided these rank-ordered lists into
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thirds. The top third of the distractors were considered to
be highly similar to the target category, the middle third
medium similarity, and the bottom third low similarity.

Behavioral methods
Participants

Twenty-four Stony Brook University students partici-
pated in exchange for course credit, none of whom par-
ticipated in Experiment 1 or 2. All subjects reported
normal or corrected-to-normal vision. Half searched for a
teddy bear target, while the other half searched for a
butterfly target.

Stimuli and apparatus

Experiment 3 was conducted using the same equipment
as in Experiment 2. The stimuli were also objects selected
from the same set of images, although the new selection
criteria (described below) required the potential placement
of these objects into different conditions. The search
displays were, therefore, different but were assembled
from the same set of objects.

Procedure

Experiments 2 and 3 had the same conditions and
followed the same procedure, with the only difference
being the distractor composition of target-absent trials;
distractors were now selected based on visual similarity
estimates obtained from the computer vision model rather
than from the behavioral similarity rankings obtained
from the web task of Experiment 1. High-similarity trials
for each target category were constructed from distractors
ranked in the top third of each rank-ordered list, and low-
similarity trials were constructed from distractors ranked in
the bottom third. Mixed trials consisted of high-similarity
distractors from the top third, low-similarity distractors
from the bottom third, and medium-similarity distractors
from the middle third. All other methodological details
were identical to those described for Experiment 2.

Results and discussion

Errors were less than 3% in all conditions and were
again excluded from subsequent analyses. These infrequent
errors were likely just motor confusions rather than cases
of confusing teddy bears or butterflies with random objects.

If categorical search is affected by the visual similarity
between our target categories and random distractors, and
if the computer vision method is able to capture these
relationships, then manual RTs should be slowest on high-
similarity trials, faster on mixed trials, and fastest on low-
similarity trials. These predictions were confirmed (Table 1).
Search times varied with target—distractor visual similarity
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for both teddy bears (F(2,22) = 35.84, p < 0.001) and
butterflies (£(2,22) = 60.95, p < 0.001); post hoc ¢-tests
with Bonferroni correction showed slower RTs in the
high-similarity condition relative to the mixed condition
(p < 0.01 for both teddy bears and butterflies) and faster
RTs in the low-similarity condition relative to the mixed
condition (p < 0.01 for both teddy bears and butterflies).

Analysis of the number of distractors fixated during
search revealed the same patterns. Fixated distractors
varied with visual similarity for both butterfly targets
(F(2,22) = 74.55, p < 0.001) and bear targets (F(2,22) =
93.55, p < 0.001). More distractors were once again fixated
on high-similarity trials (2.42 + 0.20 for bears, 3.66 + 0.24
for butterflies) compared to either mixed trials (2.10 +
0.17 for bears, p < 0.01; 2.88 = 0.23 for butterflies, p <
0.001) or low-similarity trials (1.01 + 0.19 for bears, p <
0.001; 1.94 + 0.24 for butterflies, p < 0.001), with more
distractors also fixated on mixed trials than on low-
similarity trials (p < 0.001 for bears and butterflies). As
similarity between the target categories and the distractors
increased, more distractors were fixated.

The availability of high-, medium-, and low-similarity
distractors in the mixed condition displays again enabled
us to look for direct oculomotor evidence for categorical
search guidance (Figure 4B). Analyses of these trials
showed a relationship between visual similarity and the
probability of first fixation on an object (F(2,22) = 19.42,
p < 0.001 for butterflies; F(2,22) = 36.60, p < 0.001 for
bears). As in Experiment 2, high-similarity distractors
were more often fixated first compared to medium-
similarity distractors (p < 0.05 for bears and p < 0.01 for
butterflies). Medium-similarity distractors were more
often fixated first compared to low-similarity distractors
for bears (p < 0.001) but did not reliably differ from low-
similarity distractors for butterflies (p = 0.35). First
fixations on high-similarity distractors were well above
chance (#(11) = 5.89, p <0.01 for bears; #(11) = 10.01, p <
0.01 for butterflies), and first fixations on low-similarity
distractors were well below chance (#(11) = 25.47, p <
0.01 for bears; #(11) = 8.32, p < 0.01 for butterflies), indi-
cating that initial saccades were once again guided toward
target-similar distractors and away from target-dissimilar
distractors. As before, analysis of initial saccade latencies
revealed no reliable differences between the similarity
conditions for either butterfly (F(2,22) = 1.29, p = 0.30) or
bear targets (F(2,22) = 0.76, p = 0.48), arguing against a
speed—accuracy interpretation of these guidance patterns.

The conclusion from this experiment is clear; while the
results of Experiment 2 could have been confounded by
the unintentional inclusion of nonvisual features in the
behavioral similarity rankings, the same cannot be said for
the similarity estimates used in Experiment 3. Even when
estimates reflected purely visual features, target—distractor
similarity still predicted categorical search performance.
This strongly suggests that categorical guidance not only
exists but that it may also operate in much the same way
as search guidance from a pictorial target preview. The
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visual features used to represent a categorical target may
be different and come from a different source (learned and
recalled from memory rather than extracted from a target
preview), but the underlying process of comparing these
visual features to the search scene and using this signal to
guide search may be the same.

Experiment 4: Combining human-

ranked and model-ranked
distractors

Sometimes the target—distractor similarity estimates from
subjects and the computer vision model agreed, and some-
times they did not. Of the objects that were given
consistent rankings by subjects, 39.9% of the objects in
the teddy bear condition and 36.7% of the objects in the
butterfly condition received the same ranking (high
similarity, medium similarity, or low similarity) by both
subjects and the model. If there is overlap between the
features used by the model to capture visual similarity and
the features used by subjects, it is likely to be found in
these cases. Potentially even more interesting are cases of
disagreement between the model and human similarity
estimates. Of the consistently ranked objects, 58.5% of
those in the teddy bear condition and 61.4% of those in
the butterfly condition received either a high or low
ranking by one (subjects or model) but an intermediate
ranking by the other (subjects or model). Only rarely did
subjects and the model contradict each other completely
(1.6% for teddy bears, 1.9% for butterflies), meaning that
one measure gave a most similar (or least similar)
estimate while the other gave a least similar (or most
similar) estimate. Disagreements between subjects and the
model might arise for any number of reasons: perhaps
subjects based their estimates in part on semantic features,
whereas the model obviously did not; perhaps they both
used exclusively visual features, but that these features
were different or differently weighted; or perhaps subjects
simply used more features than the few that were enlisted
by the model. Regardless of the source of the disagree-
ment, how would guidance to these objects compare to
those in which the model and subjects agreed? Exploring
the effects of these agreements and disagreements on
search guidance was the goal of Experiment 4.

Experiments 2 and 3 produced remarkably similar
effects of target—distractor similarity on search guidance
(Figure 4), but were the judgments from our subjects and
the estimates from our model tapping into different
aspects of search? To begin addressing this question, we
pit high-similarity (and low-similarity) objects against
each other, where similarity was estimated by subjects, the
model, or both. More specifically, target-absent trials
depicted four objects: a “medium” distractor, which was
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an object given a medium-similarity ranking by both
subjects and the model; a “human-only” distractor, which
was an object given either a most similar or a least similar
ranking by subjects, but not by the model; a “model-only”
distractor, which was an object ranked as either most
similar or least similar by the model, but not by subjects;
and a “human + model” distractor, which was an object
for which subjects and the model agreed on its similarity
ranking. We also had an equal number of high-similarity
and low-similarity trials, which refers to whether distrac-
tors were target-similar or target-dissimilar. For example,
on a high-similarity trial, the human-only, model-only, and
human + model distractors would all be ranked as target-
similar by subjects, the model, or both, respectively. Like-
wise, on a low-similarity trial, all three types of distractors
would be ranked as target-dissimilar. This was done to
evaluate overt search guidance both toward a high-
similarity distractor and away from a low-similarity
distractor.

These conditions allow us to test several predictions
about the relative usefulness of the behavioral and model
similarity estimates in describing search behavior. If
distractors in the human + model condition (subjects and
model in agreement) are fixated most frequently on high-
similarity trials (or fixated least frequently on low-
similarity trials), this would suggest that the features
underlying the subject and model similarity estimates are
both useful in guiding search. If the human-only dis-
tractors are fixated as frequently as the human + model
distractors, and both are fixated more (assuming high-
similarity trials) than the model-only distractors, this
would suggest that subjects just use features from the
behavioral rankings to guide their search, even when
features from the model similarity estimates are also
available. This pattern would also suggest that behavioral
similarity rankings are more useful in predicting search
performance than those from the model, perhaps because
these estimates reflect the use of more (or more powerful)
features than the relatively small set of features used by
the model. Alternatively, if the model-only distractors are
fixated as frequently as the human + model distractors,
and both are fixated more (again assuming high-similarity
trials) than the human-only distractors, this would suggest
that the features used by the model are preferable to the
ones underlying the behavioral similarity estimates and
are used preferentially to guide search. This somewhat
counterintuitive result might be obtained if nonvisual
features crept into the behavioral similarity rankings, but
only basic visual features are used to guide search;
objective similarity estimates based on color, texture,
and shape features might, therefore, be better predictors of
search guidance than similarity estimates from actual
human raters. Finally, the degree of guidance toward
target-similar distractors, and away from target-dissimilar
distractors, will be assessed for all three conditions
(human-only, model-only, and human + model) by
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comparing these levels to the level of guidance observed
to the medium distractor, which serves as a similarity
baseline present on each search trial.

Methods
Participants

Twenty-four Stony Brook University students partici-
pated in exchange for course credit, none of whom
participated in Experiment 1, 2, or 3. All subjects reported
normal or corrected-to-normal vision. Half searched for a
teddy bear target, while the other half searched for a
butterfly target.

Stimuli and apparatus

Experiment 4 was conducted using the same equipment
as in Experiments 2 and 3. The stimuli were also objects
selected from the same image set, although the new
selection criteria (described below) again required the
placement of these objects into different conditions.

Design and procedure

Experiment 4 followed the same procedure as Experi-
ments 2 and 3, the only difference being the composition
of the search displays. Unlike the previous experiments,
each display depicted only four objects. On target-present
trials (104 trials), the displays consisted of an object from
the target category (bear or butterfly) and three random,
unranked distractors. Target-absent trials were divided
into four interleaved conditions (26 trials per condition):
high-similarity teddy bear, low-similarity teddy bear,
high-similarity butterfly, and low-similarity butterfly.
Distractors for the low- and high-similarity teddy bear
and butterfly trials were chosen based on similarity
estimates obtained relative to the teddy bear and butterfly
target categories, respectively. All subjects, regardless of
whether they were searching for a teddy bear or a
butterfly, saw the identical target-absent trials; the only
difference between the two groups of subjects was the
designated target category. Target-present trials were also
identical across groups, except that the target from one
category was replaced with a target from the other (teddy
bear replaced with a butterfly, or vice versa). By having
all subjects search through the same target-absent dis-
plays, we control for all visual factors unrelated to the
similarity between the distractors and the designated
target category.

On all four types of target-absent trials (high and low
similarity for teddy bear and butterfly targets), there were
four types of distractors, one distractor of each type per
display. The human-only distractor was ranked by
subjects in Experiment 1 to be consistent with the target-
absent condition (e.g., if the trial was from the high-
similarity butterfly condition, this object would have been
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consistently ranked by subjects as being most like a
butterfly), but this object was given either an opposite or
intermediate similarity estimate by the model. The model-
only distractor was chosen to be consistent with the target-
absent condition based on the model similarity estimates
but was given the opposite similarity ranking (i.e., low
similarity for high-similarity trials) or an intermediate
ranking by subjects in Experiment 1. The human + model
distractor was chosen to agree with the target-absent
condition by both the human and model similarity
estimates; if the trial was from the low-similarity teddy
bear condition, this distractor would be ranked as
dissimilar to a teddy bear by both subjects and the model.
The medium distractor was selected to have a medium-
similarity ranking by the model and by subjects and
served as a trial-by-trial baseline against which overt
search guidance could be assessed.

Results and discussion

To determine the similarity measure (human-only,
model-only, or human + model) that is most predictive
of search behavior, we analyzed each target-absent trial to
find the type of distractor that was fixated first. We then
grouped these data by target-absent condition (high and
low similarity for teddy bears and butterflies) and plotted
their relative frequencies in Figure 5.

On high-similarity trials (Figure 5A), we expected the
most frequently fixated first distractor to indicate the
object considered by the search process to be most similar
to the target category. For the butterfly search, a highly
significant difference was found across distractor type
(F(3,33) = 1597, p < 0.001). Post hoc LSD tests
confirmed that the human + model distractors were fixated
first most frequently (p < 0.05 for all comparisons). Gaze
was directed first to these objects on about 40% of the
trials, far more frequently that what would be expected by
chance (25%). Fixated next most frequently were the
human-only distractors, which were fixated first more
often than either the model-only (p < 0.01) or the medium
(p <0.01) distractors. These latter two types of distractors
did not differ in their first fixation frequency (p = 0.70).
A qualitatively different data pattern was found for the
teddy bear search. Although distractor types again differed
in their first fixation frequency (F(3,33) = 5.01, p <0.01),
no significant differences were found between the human-
only, model-only, and human + model objects (p > 0.37
for all comparisons). All three, however, were fixated
more frequently than the medium distractors (p < 0.05
for all comparisons), which were fixated first well below
chance.

On low-similarity trials (Figure 5B), we expected the
distractors ranked by the most predictive similarity
measure to be first fixated least frequently, indicating
guidance to other, more similar objects. For the butterfly
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Figure 5. Percentage of (A) high-similarity and (B) low-similarity
trials in which the first object fixated was a human-only, model-
only, human + model, or medium distractor in Experiment 4. Error
bars show one standard error. Dashed lines indicate chance.

search, we again found a significant difference across
distractor type (F(3,33) = 5.48, p < 0.05). Note the nearly
symmetrical reversal of pattern relative to the correspond-
ing high-similarity data (Figure SA). Whereas the human +
model and human-only distractors were first fixated above
chance in the high-similarity conditions, in the low-
similarity conditions these distractors were both fixated
well below chance. Post hoc LSD tests confirmed that first
fixations on human + model distractors were less frequent
than those on the three other distractor types (p < 0.05 for
all comparisons) and that first fixations on human-only
distractors were less frequent than those on model-only
and medium distractors (p < 0.05 for both comparisons).
First fixations on model-only and medium distractors did
not reliably differ (p = 0.50), and both were fixated well
above chance. Similar patterns were found for the teddy
bear search. Distractor types again differed in their first
fixation frequency (£(3,33) = 8.13, p < 0.01), with human +
model distractors first fixated less than model-only and
medium distractors (p < 0.01 for both comparisons) but
not human-only distractors (p = 0.14). Human-only
distractors were first fixated less frequently than model-only
or medium distractors (p < 0.05 for both comparisons),
with the difference between model-only and medium
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distractors not reaching significance (p = 0.12). First
fixations on medium distractors were well above chance.

In Experiment 2, we found that similarity estimates
obtained from subjects were good predictors of search
performance, and in Experiment 3, we found that the same
was true for similarity estimates obtained from a computer
vision model. In Experiment 4, we examined cases in
which the two estimates of similarity agreed or disagreed.
Taken together, the human + model distractors were
generally better predictors of search guidance than the
human-only distractors, and the human-only distractors
were generally better predictors of search guidance than
the model-only distractors. Although this pattern was most
consistent for the butterfly search task, it does suggest that
effects of similarity on search are best captured by objects
ranked by both subjects and our model and that this is true
regardless of whether these objects were ranked as being
most similar or least similar to the target category. The
fact that human + model distractors best predicted search
guidance further suggests that both similarity estimates
captured features that are useful in guiding search.
However, there is an alternative explanation that must be
considered. It may be that the benefit found for the human +
model distractors is due to subjects and the model basing
their respective rankings in part on factors that are not
useful for guiding search. For example, subjects might
have included in their similarity rankings semantic
information that either cannot guide search (De Graaf et al.,
1990; Henderson et al., 1999; V6 & Henderson, 2009) or is
irrelevant to the search task (“I had one of these as a
child”). Given that the model would not represent such
information, by requiring the behavioral and model rank-
ings to agree, we may have inadvertently constrained the
human + model distractors to those objects in which such
factors did not play a role. A related argument might apply
to the model’s features. Some of these computer vision
features may be useful in predicting search guidance by
subjects, and others may not. By requiring that the human +
model distractors agree in their respective similarity
rankings, objects rich in visual features that are less
“human-like” may have been excluded. The guidance
benefit for human + model distractors may, therefore, be
due to the selective exclusion of problematic objects from
this set, ones in which subjects relied on nonvisual features
in their rankings and ones in which the model used visual
information not used by human raters. Better identifying
the specific features instrumental in producing similarity
effects on search guidance will be an important direction
for future work.

In this experiment, we also looked at cases in which the
behavioral and model similarity estimates disagreed and
found that search guidance was generally better predicted
by the human-ranked objects when model-only and human-
only distractors appeared in the same display. More first
fixations were on distractors ranked as high similarity by
subjects (28%-30%) than on high-similarity distractors
ranked by the model (14%—-25%), and fewer first fixations
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were on distractors ranked as low similarity by subjects
(16-19%) than on low-similarity distractors ranked by the
model (28-38%). In fact, for the teddy bear category, the
model contributed very little to guidance beyond what was
already captured by the behavioral rankings, as evidenced
by the nonsignificant differences in first fixations between
the human-only and the human + model distractors. These
patterns suggest that the features used in behavioral
similarity judgments are more useful for guiding search
than the features used by the present model, a finding that
is perhaps unsurprising given that the simple color,
texture, and shape features used by this model were never
intended to be an accurate or complete characterization of
the visual information used by subjects to guide their
search. Note also that this does not mean that search was
guided based on a semantic analysis of the search display.
While it is true that the model used information from only
visual features and that the behavioral similarity judg-
ments were not restricted in this way, it is also true that
the behavioral rankings may have included other varieties
of purely visual information not considered by the model.
It is quite likely that the relationship between categorical
search guidance and target—distractor similarity uses more
than just the three visual features considered in this study
and that this explains the difference in predictability
between the behavioral and model similarity estimates,
even though these three features were successful in
predicting guidance when other, perhaps more preferred,
features were unavailable (as shown in Experiment 3).

Conclusion

Search guidance from a pictorial preview is known to
decrease with increasing visual similarity between a target
and distractors; in the present study, we extend this well-
established relationship to categorically defined targets.
Previous research had suggested that search is unguided to
categorical targets (e.g., Castelhano et al., 2008; Wolfe
et al., 2004). In light of the present findings, as well as
other recent evidence, this suggestion should be revisited.
Multiple studies have now shown guidance in the very first
saccades made to categorical targets (Schmidt & Zelinsky,
2009; Yang & Zelinsky, 2009). Our work extends this
finding to nontarget objects that are visually similar to the
target category. Specifically, in the absence of a target, our
subjects preferentially directed their initial saccades fo
distractors that were target-similar and away from distrac-
tors that were target-dissimilar (Figures 4 and 5). These
patterns, when combined with the patterns of manual
search efficiency found in the high-similarity and low-
similarity distractor conditions (Table 1), provide strong
converging evidence for categorical search guidance in
our tasks. The fact that these results were obtained despite
the highly nonobvious similarity relationships between
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random objects and teddy bears/butterflies makes the clear
expression of guidance reported here all the more striking.
We can also conclude that these effects of similarity
on categorical search can be well described by objective
visual similarity estimates, regardless of whether these
estimates were based on explicit visual similarity rankings
(Experiments 1 and 2), derived from a computer vision
model of object category detection (Experiment 3), or both
(Experiment 4). This is also a striking finding. The lengthy
deliberations that accompanied the behavioral similarity
rankings, and certainly the simplistic visual features under-
lying the model’s estimates, might have easily resulted in
no success whatsoever in predicting categorical search
behavior. The fact that these radically different methods
both successfully predicted patterns of search guidance is
informative, suggesting that the computation of visual
similarity is not only a core cognitive operation but one
that is relatively stable across estimation method. We
speculate that visual similarity is computed early and
automatically during perception and, once derived, is used
to mediate a variety of perceptual (e.g., search guidance)
and cognitive (similarity judgments) behaviors. To the
extent that this is true, it bodes well for the diversity of
researchers in cognitive psychology, human—computer
interaction, and vision science, all attempting to better
understand human visual similarity relationships.
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'Although the semantic properties of a search object
must ultimately be accessed via visual features, we
distinguish between visual and nonvisual features to
acknowledge the possibility that the type of information
used to guide search might be either visual or semantic.

2Aspects of Experiment 1 were presented at the 2008
Meeting of the Cognitive Science Society (Zhang et al.,
2008).
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?Aspects of Experiments 2 and 3 were presented at the
2010 Meeting of the Cognitive Science Society (Alexander,
Zhang, & Zelinsky, 2010).

“Note that this agreement to human behavior does not
mean that the features and learning method used by this
model accurately describe how humans arrive at their
visual similarity estimates. Making this correspondence is
a goal to which we aspire but one that we believe is still
out of reach. However, this modest level of agreement
does suggest that this model has the potential to generate
visual similarity estimates having behavioral significance,
making it relatively unique with respect to other purely
automated computational approaches.
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