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Peripheral vision outside the focus of attention may rely on summary statistics. We used
a gaze-contingent paradigm to directly test this assumption by asking whether search
performance differed between targets and statistically-matched visualizations of the
same targets. Four-object search displays included one statistically-matched object that
was replaced by an unaltered version of the object during the first eye movement.
Targets were designated by previews, which were never altered. Two types of statistic-
ally-matched objects were tested: One that maintained global shape and one that did not.
Differences in guidance were found between targets and statistically-matched objects
when shape was not preserved, suggesting that they were not informationally equivalent.
Responses were also slower after target fixation when shape was not preserved, suggest-
ing an extrafoveal processing of the target that again used shape information. We
conclude that summary statistics must include some global shape information to
approximate the peripheral information used during search.
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INTRODUCTION

Peripheral vision is qualitatively different from foveal vision (e.g., To, Gilchrist,
Troscianko, & Tolhurst, 2011). This is perhaps most evident in the phenomenon
of crowding, in which a peripherally-presented object becomes difficult to
identify when it is near other objects (Pelli, 2008; Whitney & Levi, 2011). A
plausible explanation for crowding – as well as other phenomena of peripheral
vision – is that the visual system may represent information in the periphery
as summary statistics (e.g., Balas, Nakano, & Rosenholtz, 2009; Freeman &
Simoncelli, 2011; Greenwood, Bex, & Dakin, 2009; Parkes, Lund, Angelucci,
Solomon, & Morgan, 2001). When objects are too close, multiple objects may be
included in the same statistical representation, resulting in an intermingling of
information between central and flanking objects and lessened discrimination
ability. This lack of precision in peripheral vision has been implicated in scene
recognition and gist perception (Oliva & Torralba, 2006), and likely includes
averages of brightness, orientation, size, skew and kurtosis, and the emotion and
gender of faces (see Alvarez, 2011; Haberman & Whitney, 2012).

Recently it has been suggested that a summary representation of peripheral
information might also explain aspects of visual search behaviour, a view best
exemplified by the Texture Tiling Model (Balas et al., 2009; see also Rosenholtz,
Huang, & Ehinger, 2012; Rosenholtz, Huang, Raj, Balas, & Ilie, 2012). Models
of visual search have long proposed that peripherally viewed patterns, when they
have not yet been attended, are represented in terms of unbound simple visual
features that are “free floating” over space (Treisman, 1988), and that these
features are pre-attentively available and can be used to guide attention and eye
movements to likely target locations (Wolfe, 1994). The Texture Tiling Model
builds on this idea by using a texture synthesis algorithm (Portilla & Simoncelli,
2000) that inputs an unaltered original image (depicting arbitrary objects or
scenes) and a seed image (typically a patch of white noise), then iteratively alters
the seed image to match the summary statistics of the original – the new
synthesized image is therefore equated to the original with respect to the feature
statistics, but the spatial relations of these features to each other are broken.1

1Methods of computing summary statistics differ in the degree to which they break the
spatial relationships between features; this breakage is pronounced in the single pooling region
version of the Texture Tiling Model but far less so in more recent methods that employ multiple
pooling regions (Freeman & Simoncelli, 2011; Rosenholtz, Huang, & Ehinger, 2012).
Moreover, to the extent that higher-order statistics are used to compute summary representa-
tions, this breakage will never be entirely complete. However, while it is true that most methods
do preserve spatial statistics to varying degrees, it is also true that these methods must discard
some spatial relationship information if they are to explain the core phenomena of interest; if
spatial information was preserved completely, the swapping of nearby features believed to
largely determine perception in the visual periphery should not occur.
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Tests of this model have used correlational designs relating present/absent target
detection performance in a time-unlimited foveal detection task to performance
in a time-limited search task where targets appeared in the visual periphery. In
the foveal detection task, patches containing the target and distractors, or just
distractors, were synthesized and target detection accuracy was assessed and
correlated with accuracy from a variety of search tasks using non-synthesized
objects. If the intermingling of object features makes it harder to detect targets in
synthetic images, then eye movements or shifts of attention, thought to increase
precision and the use of local features, would be needed to avoid target detection
errors in the search version of the task. This is precisely what was found: As
performance in the search task improved, so too did the detection of targets in
the foveal task (Rosenholtz, Huang, Raj, et al., 2012).

However, the existing evidence relating summary statistics to search is lacking
in several respects. First, the correlational nature of this work raises an obvious
concern – even if summary statistics are sufficient to search, search may use
different features that happen to correlate with the summary statistics. Second, if
the only information used in peripheral vision is summary statistics, task perform-
ance should be identical for peripherally-presented original and statistically-
matched images, not just in accuracy, but in manual reaction time and oculomotor
measures as well – concrete predictions that have never been tested. Finding that
additional time is required to recognize peripherally-viewed synthetic images
would suggest that these images are not only missing needed information, but that
some mechanism is available to recover this information so as to ultimately
perform the task. Third, models of summary statistics may make predictions that
are inconsistent with findings in the search literature. The clearest example of this
is efficient conjunction search. Targets defined by a conjunction of features can be
found more quickly than what would be predicted by a random selection of search
objects, and adding features to the conjunction target makes search guidance more
efficient, not less (Wolfe, 1994). This would not be possible if the features of a
target and distractors were scattered over space. More generally, to the extent that
models are able to capture the spatial relationships between different features and
use this information to predict efficient search guidance, they will not be able to
also account for crowding and related phenomena in peripheral vision (and vice
versa). This relationship, however, has not been addressed.

Is search guided by features in specific spatial relationships, or just a statistical
summary of those features? We directly addressed this question by placing targets
and their statistically-matched synthetic counterparts – generated using the single
pooling region version of the Texture Tiling Model (Balas et al., 2009) – in visual
search arrays and measuring how often these objects were first fixated during
search. These immediate object fixations are a conservative, directly observable,
and accepted measure of search guidance (Yang & Zelinsky, 2009; Alexander &
Zelinsky, 2011; Maxfield & Zelinsky, 2012), one that avoids the need to infer
guidance efficiency from search slopes (Zelinsky & Sheinberg, 1997). Moreover,
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this measure is perfectly suited to the question at hand, as evidence for the pre-
ferential selection and fixation of an object must be based on a pre-attentive analysis
of that object in the visual periphery. This is important because attending to a
peripherally-viewed object might change the summary statistics that are computed
for that object (for a recent discussion, see Haberman & Whitney, 2012).

To determine whether differences in oculomotor behaviour exist between
targets and their synthesized versions we adopted a gaze-contingent display
change paradigm. This highly influential paradigm was introduced by McConkie
and Rayner (McConkie & Rayner, 1975, 1976; Rayner, 1975) to evaluate the
information from parafoveal and peripheral vision that is used during reading,
but has since been adopted by researchers to study related questions in search
and scene perception (e.g., Nuthmann, 2013; see also Rayner, 1978, 1998, and
2009, for reviews). Regardless of the context, the basic experimental logic is the
same: If altering information in the visual periphery (e.g., replacing the letters of
text with all Xs) results in no change in oculomotor behaviour compared to an
unaltered control, then one can conclude that the manipulated information was
unimportant to the task (e.g., reading). The experimental logic used in the present
study is essentially identical: If the information from the visual periphery used to
guide eye movements during search can be characterized by a statistical
summary, then search guidance should be unaffected by whether the target is
synthetic or not, as the two would be informationally equivalent. If, however,
unaltered (non-synthetic) targets are preferentially fixated relative to synthetic
targets, this would demonstrate that the guidance process uses information that is
not included in a statistical summary of the object’s features, at least for the
synthetic images used in this study. This would also be an indirect test of the
single pooling region version of the Texture Tiling Model (Balas et al., 2009), as
it was this model and the methods that it employs that was used to generate the
synthetic objects used in this study.

METHOD

Participants

Twenty Stony Brook University students with normal or corrected-to-normal
vision participated for course credit.

Stimuli and apparatus

Search displays consisted of one target image and three distractors, placed ∼7.5°
from central fixation in a square formation yielding one object per quadrant. One
distractor was a “lure” from the same category as the target. Targets and lures
were teddy bear images, as described in Alexander and Zelinsky (2012). Non-
lure distractors were random category non-bear objects selected from the
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Hemera® Photo-objects collection. Individual objects were resized to ∼1.8° of
visual angle and converted to greyscale so as to accommodate the computational
method used to generate synthetic counterparts (described below).

The Portilla-Simoncelli texture synthesis method, a component of the Texture
Tiling Model (Balas et al., 2009), was used to generate the feature-matched
objects used in this study. The original source should be consulted for details
(Portilla & Simoncelli, 2000), but briefly this method uses a steerable pyramid to
take multi-scale linear filter decompositions of an image at many orientations,
then computes local autocorrelation statistics, relative phase statistics, and the co-
occurrence of wavelet responses across nearby pairs of positions, orientations,
and scales. Combining these with the mean, variance, range, skew, and kurtosis
of the pixel distribution results in approximately 700 summary statistics. A
synthetic version of the original image is created by iteratively projecting these
statistics onto a seed image, which results in a new image having the same
summary statistics as the original. This method is completely deterministic,
although different synthetic images can be obtained from the same original
image by projecting the summary statistics onto different seed images.

We tested two varieties of seed images, both of which have been used in
previous work (e.g., Balas et al., 2009). One seed consisted of a canvas filled with
white noise (a “noise-seed”). Noise-seeds often result in wrap-around (see Balas
et al., 2009), an artefact of the synthesis algorithm (owing to the confinement of
synthesized features to a torus) resulting in the spreading of synthetic patterns
beyond the bounds of the canvas and continuing on the opposite side of the image.
To minimize wrap-around, and any task performance differences that might
accompany it, the canvas size was expanded to 128 × 128 pixels, over 125% the
size of the original teddy bear images. Several different noise-seeds were also
used to generate slightly different synthetic versions of each teddy bear to allow
for the selection of stimuli that were roughly centred and had no obvious wrap-
around. Note that these precautions should only serve to improve search guidance
to noise-seed synthetic targets and should work against us finding any differences
between these targets and the originals. The second type of seed consisted of a
Gaussian-filtered version of the original image (a “shape-preserving” seed), to
which Gaussian white noise was added. Shape-preserving seeds tend to naturally
minimize wrap-around by causing the pixels of the bear (as opposed to the white
pixels surrounding the bear) to spatially cluster (Balas et al., 2009). The most
salient difference resulting from the use of noise-seeds and shape-preserving seeds
is that shape-preserving seeds tend to produce synthetic images that coarsely
approximate the global shape of the original objects. Examples of both seed types
and the resulting synthetic images are shown in Figure 1.

Gaze position was recorded using an EyeLink® 1000 eyetracker sampling at
2000 Hz using a 9-sample velocity/acceleration model. Participants sat 68.7 cm
from a CRT monitor (1024 × 768 screen resolution operating at 120 Hz), and
registered their manual responses using a gamepad controller.
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Procedure

There were five randomly interleaved within-participant conditions: An unaltered
condition in which no synthetic images appeared, noise-seed target and noise-seed
lure conditions in which a noise-seed was used to generate synthetic versions of
the target or lure object, respectively, and shape-preserved target and shape-
preserved lure conditions, identical to the noise-seed conditions except for the
use of a shape-preserving seed. In all but the unaltered condition, the target or
lure in the search display initially appeared in its synthetic version, but was
replaced with the original version during the first saccade after search display
onset. This gaze-contingent change was executed when eye velocity reached
42°/s, and was completed an average of 14 ms later while the eyes were still in
motion. In the unaltered condition, the target exactly matched the preview
throughout the trial.

Figure 2 summarizes the experimental procedure. Each trial was participant-
initiated and began with a one second presentation of a target preview (always
unaltered). This was followed by a central fixation dot that had to be fixated for at
least 100 ms before the search display would appear. A target appeared in each
search display, and the participant’s task was to fixate it and press a button. There
were 20 practice trials and 120 experimental trials, 24 per condition. After the
experiment, a questionnaire was administered to assess whether participants were

Figure 1. Examples of unaltered targets, seeds, and synthetic images generated from each seed. See text
for additional details.
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aware of the gaze-contingent display changes or the synthetic objects. Participants
were told that there were two versions of the experiment, one in which the bear
target shown at preview sometimes appeared distorted or weird for a brief moment
during the search display and another in which this did not occur, and they were
asked which version of the experiment they thought they had participated in. This
was done to minimize under-reporting of awareness of the display changes, while
not revealing the actual existence of these changes which would certainly have
inflated the frequency of their report. These initial questions were followed by
questions asking more explicitly about the display change manipulation, such as,
“Did you notice ANY bears change?”. No participant reported noticing the gaze-
contingent changes. Finally, participants were informed that gaze-contingent
changes did occur and were shown examples of the synthesized targets. Here too,
no participant reported seeing the synthetic objects.

RESULTS

Comparisons to a chance baseline were conducted using a one-sample t-test with
a chance level of 0.25, reflecting the random direction of gaze to a search object.
All other analyses used linear mixed effects modelling (LME, Baayen, Davidson &

Figure 2. Procedure illustrating a trial from the noise-seed lure condition.
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Bates, 2008) or logit mixed effects modelling (Jaeger, 2008) in R (R Develop-
ment Core Team, 2012). These techniques were used because our measure of
guidance – whether or not an object is fixated first – is binomial, and ANOVA is
not appropriate for analysing binomial data (Agresti, 2002; Jaeger, 2008).
Moreover, mixed effects modelling tends to be more powerful than ANOVA (see
Luke & Christianson, 2011), and unlike ANOVA, LME skips the omnibus
analysis and makes individual pairwise comparisons between all conditions and
a designated baseline, removing the need for post-hoc t-tests. This has the added
advantage of making the statistic immune to the inclusion of conditions that are
not significantly different from one another, whereas including these conditions
in an omnibus ANOVA could lead to a non-significant result. We fit the
intercepts and slopes for the participant-by-condition random effects, and
included in the final models those slopes that contributed to better fits, as
indicated by likelihood ratio tests (Baayen, et al., 2008). For all non-binomial
measures, p-values were obtained using Markov Chain Monte Carlo (MCMC)
simulations.

Figure 3 plots proportions of immediate fixations by object type for each
of the five experimental conditions. Error trials were fewer than 6% in all
conditions and were removed from further analysis. In all conditions, the
target was fixated first significantly more often than chance would predict, all
t(19) ≥ 4.81, all p ≤ .001, suggesting that there is sufficient information even in

Figure 3. Proportion of trials in which the target (dark grey bars), lure (light grey bars), or non-lure
distractor (medium grey bars) was the first object fixated in each of the five experimental conditions. The
horizontal dashed line indicates the level of preferential fixation predicted by chance, and error bars indicate
one standard error of the mean.
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noise-seed targets to guide search. More critically, the noise-seed target was less
likely to be fixated first relative to unaltered targets (β = 0.28, SE = 0.14,
z = −2.09, p = .04), but first object fixations did not differ between the unaltered
and the shape preserved target conditions or either of the lure conditions
(β ≥ 0.05, SE ≥ 0.13, z ≤ −0.39, p ≥ .55). This suggests that noise-seed targets
are missing information that is useful for search guidance that is retained by
shape-preserved targets, and more speculatively, that shape-preserved targets are
informationally equivalent to unaltered targets.

Comparing guidance to the lure with guidance to the target provides additional
information about information quality in peripheral vision. If a synthetic target
only weakly matches the target preview, gaze may be preferentially directed to
the lure instead, which shares the target category and likely has target-similar
visual features. Except for the noise-seed lure condition (which was numerically
but not significantly above chance), the lure was fixated first more often than
chance, all t(19) ≥ 2.08, all p ≤ .05; noise-seed lure, t(19) = 1.97, p = .06,
suggesting that the lure was a reliable attracter of gaze. Yet, when the target was
generated using a noise seed, the lure was fixated more often than lures in the
unaltered condition (β = 0.37, SE = 0.14, z = 2.59 p = .01), and indeed in all
conditions other than when the target shape was preserved (β ≥ 0.28, SE ≤ 0.14,
z = 2.01, p ≤ .04; shape-preserved target, β = 0.251, SE = 0.14, z = −1.80,
p = .07). This raises the intriguing possibility that categorical guidance, indicated
here by guidance to a lure, may be mediated by information approximated by a
noise-seed synthetic target. Finally, to test whether the synthesis method was
creating some target-dissimilar artefact that might cause eye movements not to
be directed to the synthetic targets, we compared the first object fixation rates
between lures in the unaltered condition and either noise-seed or shape-preserved
lures. If such an artefact existed, immediate fixations on synthetic lures should be
less frequent than those on unaltered lures because the synthetic lure would
presumably also share the artefact, creating the mismatch to the guiding target
representation. However, this analysis revealed no reliable differences (β ≥ 0.25,
SE ≥ .14, z ≤ 0.17, p ≥ .55), suggesting that guidance patterns were not driven
by the presence of some oddity introduced by the synthesis method (regardless
of seed type).2

To explore the potential for later search guidance we analysed the time
between search display onset and when the target was first fixated (time-to-
target). Time-to-target was longer in the noise-seed target condition compared to
unaltered targets (β = 52.00, SE = 11.08, t = 4.69, p < .001), providing

2 In a related analysis we asked whether differences in first object fixations were due to a
speed–accuracy trade-off. However, the time to fixate the first object was not reliably different
between conditions, (β ≥ −3.50, SE ≥ 4.51, t ≤ 0.06, p ≥ .43), indicating that our evidence for
guidance was not reflecting a trade-off between speed and accuracy.
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converging evidence that objects generated from noise-seeds are missing
information used to guide search (Figure 4). Also consistent with the first-
fixated analysis, time-to-target did not reliably differ between the unaltered target
and the other conditions (β ≥ −15.67, SE ≥ 11.09, t ≥ −1.41, p ≥ .15),
suggesting that the shape-preserved targets captured this missing information.
Note that the noise-seed lure and shape-preserved lure conditions were included
in this analysis, and appear in Figure 4, because it is possible that synthetic lures
might have affected the time to fixate the target if lures were sufficiently non-
bearlike and, consequently, no longer served as lures. This, however, proved not
to be the case.

Does extrafoveally processing a synthesized search target lead to faster
recognition of its unaltered counterpart after its fixation? To answer this question
we analysed verification time – the time from first fixation on the target until the
button response. Verification times were longer with noise-seed targets than
unaltered targets (β = 48.31, SE = 17.32, t = 2.79, p = .01; Figure 5), despite the
fact that these conditions differed only in terms of a peripherally-viewed
synthetic target for ∼153 ms, the average latency of the initial saccade following
search display onset. Not only is this evidence for extrafoveal processing affecting
later target verification, but it shows that this extrafoveal processing benefit
is weaker in the case of a noise-seed target, presumably because it lacks
information that might be useful in recognizing the unaltered target. This finding
is consistent with predictions made by Rosenholtz, Huang, Raj, et al. (2012) and

Figure 4. Time from search display onset to first fixation on the target for each of the five experimental
conditions. Error bars indicate one standard error of the mean.
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their conjecture that objects are represented by summary statistics before
attention is directed to a location, and not following the application of attention.
Given that this extrafoveal processing benefit occurs after attention is directed to
an object, one would therefore not expect the synthesized objects to match the
unaltered objects, and indeed no such differences were found between unaltered
targets and any of the other three conditions (β ≥ 5.11, SE ≥ 17.30, t ≤ 0.87, p ≥
.38), again suggesting rough informational equivalence between shape-preserved
and unaltered objects. Note also that the noise-seed lure and shape-preserved lure
conditions were again included in Figure 5, but this was done to maintain
consistency with the other figures and no differences in verification time would
be expected (and none were found).

DISCUSSION

Our results offer partial support for the use of summary statistics to guide search.
To the extent that only summary statistics are available in the visual periphery,
we should have found no guidance differences between unaltered and
synthesized targets in our task. Whereas this proved to be the case for shape-
preserved targets, we observed a significant decrease in guidance to noise-seed
targets. Although it is not yet known whether this limitation of a noise-seed will

Figure 5. Time from first fixation on the target until the button press response for each of the five
experimental conditions. Noise-seed and shape-preserved lure conditions were included here for consistency
with the other figures, although no effect on target verification time was expected in these conditions. Error
bars indicate one standard error of the mean.
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generalize to free viewing tasks and scenes (but see Loschky, Hansen, Sethi, &
Pydimari, 2010), our finding should serve as a cautionary note to studies
assuming information equivalence between unaltered stimuli and stimuli
synthesized from a noise-seed (e.g., Rosenholtz, Huang, Raj, et al., 2012). It
might also be the case that summary statistics are adequate for describing search
guidance, and that the difference reported here between unaltered and noise-seed
targets reflects instead a failure of the current synthesis method to fully capture
these statistics. However, while this cannot be ruled out, the fact that this
method, when combined with shape, was largely successful in producing a
synthetic target capable of strong search guidance argues against this possibility.
Global shape, an arguably non-summary statistic, was probably responsible for
the observed difference.

The fact that none of our participants reported seeing synthetic objects in our
gaze-contingent paradigm, despite their presence on 4/5ths of the trials, is also
telling, and suggests that the information available from synthetic images
matches reasonably well the information available from peripheral vision. This
is consistent with Freeman and Simoncelli’s (2011) finding that observers could
not discriminate unaltered scenes from synthetic scenes that were generated by a
similar method using noise-seeds. However, caution should again be exercised
when interpreting such demonstrations, as the features used to guide visual
search may be different from those underlying conscious perception (e.g.,
Nagy & Sanchez, 1990; Wolfe, Friedman-Hill, Stewart, & O’Connell, 1992;
Wolfe et al., 2011). Our data extend these findings by showing that search
guidance uses information from the visual periphery not captured by noise-seed
targets, even though observers failed to report seeing strange, weird, or distorted
objects upon explicit post-experiment questioning. As the code from newer
texture synthesis methods (e.g., Freeman & Simoncelli, 2011) become publically
available, claims about original and synthesized versions of images being
metamers can be evaluated in terms of highly sensitive oculomotor measures
using the same gaze-contingent paradigm described in the present study.

Of equal theoretical importance is our finding of comparable search guidance
between unaltered and shape-preserved synthetic targets. The features used to
guide search are still largely unknown (Wolfe & Horowitz, 2004), and this is
particularly true for real-world objects (Zelinsky, 2008). However, the fact that
these two types of targets produced similar guidance suggests that a specification
of these features may be within reach; a summary statistical representation of a
target, combined with global shape information (as approximated by a shape-
preserving seed), may capture the most relevant feature dimensions for guiding
search. Yet again, however, caution must be exerted. Colour is important for
guidance (e.g., Hwang, Higgins, & Pomplun, 2009), and this contribution was
not evaluated in the present study; as methods for synthesizing colour objects are
developed, these will need to be tested. In addition, the Portilla and Simoncelli
(2000) texture synthesis algorithm is only one method for capturing and
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visualizing summary statistics, and the use of other algorithms (or modifications
of this algorithm) may produce different results, as could the use of target classes
other than teddy bears. Finally, our design allows for the possibility that a shape-
preserved target contains more information than what would have been needed to
match guidance to unaltered targets. Future work will need to better specify the
additional features captured by a shape-preserved target so as to better
understand the exact information used to guide search.

At issue here is whether shape itself might be considered a form of summary
statistic. Very recent work using multiple pooling regions has suggested that this
may be the case (Freeman & Simoncelli, 2011; Rosenholtz, Huang, & Ehinger,
2012). Rather than accumulating statistics over a single pooling region, akin to
information pooling over a single receptive field, information about global shape
may be preserved if it is accumulated over multiple and overlapping pooling
regions. This possibility is reminiscent of a quandary faced by researchers
studying the coding of saccade targets by the superior colliculus. Collicular
movement fields, even those near the fovea, are too large to explain the high
spatial precision of saccade targeting. However, if a system uses information
from multiple overlapping movement fields, high precision would be predicted
(Sejnowski, 1988; see also McIlwain, 1986, and Rousselet, Husk, Bennett, &
Sekuler, 2005). A similar explanation may apply here; the integration of feature
information over multiple overlapping pooling regions may allow for the
recovery of spatial relationships between these features – and therefore, shape.
Whether this form of shape coding should be considered a higher-order summary
statistic is a topic that this research community will need to engage.
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