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D. Hume (1739/1987) argued that causality is not observable. P. W. Cheng (1997) claimed to present “a
theoretical solution to the problem of causal induction first posed by Hume more than two and a half
centuries ago” (p. 398) in the form of the power PC theory (L. R. Novick & P. W. Cheng, 2004). This
theory claims that people’s goal in causal induction is to estimate causal powers from observable
covariation and outlines how this can be done in specific conditions. The authors first demonstrate that
if the necessary assumptions were ever met, causal powers would be self-evident to a reasoner—they are
either 0 or 1—making the theory unnecessary. The authors further argue that the assumptions the power
PC theory requires to compute causal power are unobtainable in the real world and, furthermore, people
are aware that requisite assumptions are violated. Therefore, the authors argue that people do not attempt
to compute causal power.
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Hume (1739/1987) argued that causality is not present in our
experience and that the conception of causality results from induc-
tive inferences based on several observable cues such as covaria-
tion. Covariation is obviously a fallible indicator of causal rela-
tionships. For example, the number of drownings and sales of ice
cream presumably covary but do not cause each other. In response,
Cheng (1997) suggested that if covariation is explicitly treated as
a consequence of unobservable causal relationships, then infer-
ences may be made that accurately reflect the causal strength of
those relationships. The power PC theory (Cheng, 1997; Novick &
Cheng, 2004) claims to correctly extract these causal powers under
certain circumstances. Indeed, Cheng (1997) wrote that in many
situations the power PC theory “presents a theoretical solution to
the problem of causal induction first posed by Hume more than
two and a half centuries ago” (p. 398). On the basis of the claim
that reasoners seek to infer causal powers, the power PC theory is
also presented as a descriptive model of human causal induction.
In what follows, we evaluate these claims.

The Power PC Theory

Cheng (1997) defined causal power as the probability with
which a cause produces an effect when the cause is present. This
quantity differs from the probability of the effect given the pres-
ence of the cause (i.e., P(e|c)), because the latter includes those
occasions when the cause brought about the effect as well as

occasions on which the cause was present but failed to bring about
the effect and an alternative cause brought about the effect. Causal
power aims to capture the probability with which the cause actu-
ally causes the effect.

The feature of the power PC theory that sets it apart from other
covariation accounts (e.g., Cheng & Novick, 1990; Rescorla &
Wagner, 1972) is that it seeks to compute a context-free descrip-
tion of the causal relationship. Most previous covariation accounts
provide an estimate of causal strength that is inherently bound to
the context in which the learning occurred. Thus, if causal strength
is computed from a set of observations in one setting (the learning
context), this quantity may be of no value in any other context. In
contrast, the causal power of a given relationship does not vary
with context (e.g., the number or effectiveness of other causes).
The power PC theory is proposed as a both normative and descrip-
tive account of causal induction. Thus, it is argued that a reasoner’s
goal is “to induce the unobservable causal power of a candidate
cause in the distal world from observable events represented in the
proximal stimulus” (Buehner, Cheng, & Clifford, 2003, p. 1120).

To compute causal power, Cheng (1997) began by assuming
causal situations1 contain two causes and an effect. One cause is
the candidate cause—the cause we are interested in evaluating
(called i). The second cause is a composite that represents all other
causal factors in the world (called a). These two causes operate to
bring about the effect of interest (called e). Here are the assump-
tions as Cheng (1997) laid them out.

1 Here we describe the power PC theory’s process for computing the
simple causal power of a generative cause (Cheng, 1997). This is done for
the sake of clarity and brevity. Despite this focus, the following analysis
can be similarly applied to the preventative causes as well as interactive
causes.
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1. when i occurs, it produces e with probability pi; when a occurs,
it produces e with probability pa; and nothing else influences the
occurrence of e;

2. i and a influence the occurrence of e independently; and

3. i and a influence the occurrence of e with causal powers that are
independent of how often i and a occur. (p. 373)

An additional assumption that is only implied by Cheng (1997)2

and more explicitly stated by Cheng (2000) is that a can produce
e but not prevent it (this is hereafter referred to as Assumption 4
for brevity).

Given this situation, the presence and absence of i and a operate
to generate the covariation we ultimately observe. Under these
assumptions, the observable probabilities can be related to the
unobserved causal powers. The target event, e, occurs in the
presence of i when e is caused by i or a:

P�e�i� � pi � P�a�i� � pa � pi � P�a�i� � pa. (1)

Similarly, e occurs in the absence of i because of a:

P�e� � i� � P�a��i� � pa. (2)

The quantity of interest, pi, can then be solved for, resulting in
Equation 3:

pi �
�P�e�i� � P�e��i�� � ��P�a�i� � P�a��i�� � Pa�

1 � P�a�i� � pa
. (3)

This equation computes the causal power of the candidate, but we
are still left needing quantities that are unavailable. For example,
pa, the causal power of the composite alternative cause, a, is, like
all causal powers, unobservable. Because of this, Equation 3
cannot be used. To resolve this dilemma, Cheng (1997) noted
when the occurrence of the candidate cause is independent of the
occurrence of the alternative cause (i.e., P(a|i) � P(a|�i), referred
to hereafter as Assumption 5), Equation 3 simplifies as follows:

pi �
P�e�i� � P�e��i�

1 � P�e��i�
. (4)

Equation 4 relates causal power to probabilities that are observ-
able, allowing us to estimate causal power. Although there have
been interesting debates about whether people’s causal judgments
match the quantitative predictions of Equation 4 (e.g., Buehner et
al., 2003; Lober & Shanks, 2000), we focus on the assumptions
behind Equation 4, an aspect of the theory that has rarely been
questioned.

When All Requisite Assumptions Are Satisfied

Let us, for a moment, assume all these assumptions are met.
This situation contains a single generative cause, i; a single effect,
e; and an alternative, generative cause, a. In this situation, i and a
do not interact, and there are no preventive alternative causes.
Because all of these assumptions are necessary in deriving Equa-
tion 4, this is the only possible world where it is safe to apply
Equation 4.

Note that in this situation, if i causes e at all (i.e., pi 	 0), e must
follow whenever i occurs. Because there are no preventative

causes in this world (Assumption 4), it cannot be the case that e
was prevented from occurring in this situation. Similarly, because
there are no causes that interact with i to produce e (Assumption
2), it cannot be the case that some necessary interacting factor was
absent. Hence, e must always follow from its generative cause i
(when i is present)—unless for some inexplicable reason, the
causal link between i and e is intrinsically indeterminate (see
below). In summary, if all requisite assumptions are satisfied in the
power PC theory, causal power should always be either 0 or 1.
There is no need to use Equation 4 to derive causal power.

Let us now consider more complex situations in which multiple
causes, say i and j, interact (Novick & Cheng, 2004). When we
estimate conjunctive causal power, assumptions corresponding to
Assumptions 2 and 4 are still required. Novick and Cheng (2004)
stated, “. . .alternative causes influence e independently of i, j, and
their conjunction” (p. 471) and “unobserved causes in a could
produce e, but not prevent it” (p. 463). Thus, our argument still
holds in these situations. For example, if we have a complete,
elaborate specification of how smoking leads to lung cancer (in-
cluding what other factors interact with or prevent this process),
then whenever this entire set of interacting causal factors is ap-
propriately configured, the likelihood that lung cancer will occur
should be 1. Again, we do not need to rely on equations derived by
Novick and Cheng (2004) to estimate conjunctive causal power.

In the above argument, we specified one possibility in which
causal power could be probabilistic—the situation in which a
candidate cause (or conjunctive cause) fails to produce e for no
reason at all (see the next section for apparent counterexamples).
To concretely illustrate this, imagine that P(e|i) � 0.8 and
P(e|�i) � 0. In this situation, Equation 4 predicts that causal
power should be estimated as 0.8. Now suppose a person were
asked to estimate causal power. To do so, the person is asked to
estimate P(e|i) in a counterfactual world where no alternative
causes exist (see Buehner et al., 2003, for discussion of causal
queries). Suppose this person gives a response of 0.8, matching the
predictions of Equation 4. Such an estimate indicates that in a
vacuum devoid of any other causal influences, the cause will lead
to the effect 80% of the time. What happens on the other 20%
occasions on which the cause fails to produce the effect? One
might think that an alternative cause—whether known or unknown
to the reasoner—prevented the effect from occurring on these
occasions. However, because there are no alternative causes in this
counterfactual world, this possibility is not allowed. Another in-
terpretation might be that some factor interacted with the candidate
cause so as to not produce the effect. This too relies on alternative
causes and thus will not work as an explanation. Indeed, a causal
power of 0.8 implies that in a vacuum, free of alternative causes,
the candidate cause will fail to produce the effect for no reason at
all. Could this be what Equation 4 is capturing? More critically, is
it what people are estimating?

People have generally found the idea of inherently probabilistic
causality to be implausible. Einstein famously denied the proposal
of quantum mechanics because it required that the world, at its
core, be probabilistic (Einstein, Podolsky, & Rosen, 1935). He

2 For instance, in the first assumption, it is noted that when a occurs, it
“produces” e.
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claimed that quantum mechanics must be incomplete because god
“does not play dice” (Hoffman, 1972, p. 193). If it was not until the
development of modern physics that the notion of inherent ran-
domness was taken seriously, it seems quite unlikely that this is
part of laypeople’s conceptualization of causality.

Indeed, many psychologists have argued that indeterminism at
the level of individual, direct causal links (like those evaluated by
the power PC theory) is incompatible with most people’s world-
view (e.g., Goldvarg & Johnson-Laird, 2001; Koslowski, 1996).
Instead, people may treat seemingly indeterminate relationships as
resulting from complex unobserved causal interactions. Smoking
may cause lung cancer, but not everyone who smokes gets lung
cancer. People may accept this by assuming that there is an array
of unobserved and/or unknown causal influences in operation (e.g.,
genetics) that produces what looks like an indeterminate causal
relationship. Some of these unknown and/or unobserved causal
influences might be preventive (i.e., in violation of Assumption 4)
and/or interact with the candidate cause (i.e., in violation of As-
sumption 2). Harré and Madden (1975) similarly argued that it is
irrational to state that A causes B while agreeing to the possibility
of observing A in the absence of B. They suggested two possibil-
ities: (a) that such a situation should necessarily lead us to abandon
the belief in the causal relation or (b) that “alternatively we can
preserve the conceptual relation between the predicates by the
claim that something had gone wrong in the aberrant case” (Harré
& Madden, 1975, p. 9).

There are additional reasons why probabilistic causality is psy-
chologically implausible. If this inherent randomness is what prob-
abilistic causal powers capture, the power PC theory implies that
the amount of this randomness present in causal relationships
varies in a systematic way, such that the randomness results in a
causal power of 0.8 for one causal link but 0.15 for another causal
link, for instance. Moreover, this randomness inherent in a given
causal relationship stays constant; it is an enduring property of the
relationship. Finally, this randomness is not the result of other
causal influences; probabilistic causal power implies that such
indeterminism would occur in a vacuum. It is difficult to believe
how such random behaviors could be enduring characteristics
inherent to causal relations.

In summary, we have argued that if the assumptions required for
Equation 4 to compute causal power are satisfied, then the result of
Equation 4 should always be either 0 or 1 unless one subscribes to
the notion of inherent indeterminism in the world. In this section,
we argue that this kind of pure randomness is psychologically
implausible. Thus, there is no need to derive causal powers using
Equation 4 (or the even more complex equations needed for
conjunctive causal powers; Novick & Cheng, 2004). They are
always either 0 or 1.

Apparent Counterexamples

Let us consider apparent counterexamples one might argue for
in the situation we are considering. We discuss three cases in
which causality appears to be indeterminate when all requisite
assumptions are seemingly satisfied. Ultimately, each of these
examples violates at least one of the conditions required to com-
pute causal power.

The first possibility for probabilistic causality has to do with
levels of activation. Consider an example of leaves being blown

off a tree. In this situation, different quantities of leaves may be
blown off given a gust of wind, thus leading to a probabilistic
outcome. This example can be treated in at least two different
ways. First, the effect variable can be represented as a continuous
variable (i.e., percentage of leaves blown off). Because the power
PC theory does not currently handle continuous variables, this
situation would fall outside the scope of the model. A second
possible way to conceptualize this situation would be to consider
each individual leaf as a possible effect. In this situation, the
presence or absence of the effect and the cause are easier to
classify. Each leaf could be observed and classified as to whether
it had fallen. The question still remains as to why some leaves
would fall and others would not, but, as we have argued, one
would be forced to conclude that this variation would be due to
preventative or interactive causes such as variations in the strength
of attachment of leaves to the tree. That is, this situation, in fact,
fails to meet the conditions required to compute causal power.

Second, if the relationship between the candidate cause and the
target effect consists of multiple intermediate steps, the causal
relation can look indeterminate when the intermediate steps fail.
Suppose one hypothesizes that X causes Z. Nothing interacts with
X in bringing about Z, and nothing prevents Z; Assumptions 2 and
4 are satisfied. Further suppose that the truth is that X causes Z
only indirectly via Y (which might be thought of as the mechanism
by which X influences Z). The relation between X and Z becomes
indeterminate if there is a preventative cause of Y or some inter-
acting cause necessary for Y to bring about Z. Thus, if X occurs
but Y does not because of a preventative cause or interacting
factors, Z would not occur either, making the relation between X
and Z appear indeterminate. The problem with this situation is that
X is not a cause of Z. Causal power is a quantity describing direct
causal relations and thus cannot characterize the indirect influence
of X on Z (Glymour, 2000). X appears to be a cause of Z because
it is confounded with Y, which is a cause of Z (in violation of
Assumption 5; i.e., P(Y|X) 
 P(Y|�X)). This fact should become
evident when conditionalizing on the absence of Y (X and Z will
no longer co-occur). Therefore, this apparent indeterminism occurs
because of the mistaken belief about the true cause of Z and the
subsequent violation of one of the required assumptions.

The third possibility concerns an incorrect categorization of the
candidate cause (Cheng, personal communication, August 31,
2004; Lien & Cheng, 2000). Take the following example: Suppose
50 healthy participants in a hypothetical experiment drank from a
glass of liquid that the experimenter prepared, and 50 healthy
participants did not drink anything during this experiment. Of the
50 participants who drank, only 25 died immediately, and none of
the participants who did not drink died immediately. In reality, of
the 50 glasses the experimenter prepared, 25 contained plain water
and 25 contained a clear odorless poison that is completely fatal
without any antidote (i.e., Assumptions 2 and 4 are met). Yet, an
outside observer, who has no way of detecting the different liquids
(i.e., water vs. poison), might attempt to evaluate the causal power
of drinking the contents of the glass with respect to death. If he or
she was to do so, the result of Equation 4 would be 0.5, a
seemingly indeterminate estimate of causal power in a fully de-
terministic situation.

The problem in this situation is that the miscategorization of the
candidate cause has led to a confound. The true cause (drinking
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poison) is confounded with the reasoner’s candidate cause (drink-
ing the contents of the glass). This is a violation of Assumption 5.3

It should be evident that the result of Equation 4 is not an accurate
estimate of causal power in this case. First, the causal power of
drinking from a glass in this situation is intuitively 0 (drinking
from the glass per se is not the cause of any of the 25 deaths). The
reason it looks as though drinking from the glass is (probabilisti-
cally) sufficient for death is because it is confounded with the true
cause (i.e., drinking poison). Second, the result of Equation 4 in
this situation is not context-free (as causal power is; e.g., Cheng,
1997). If our reasoner was to go to a poison-free context, estimates
of causal power of drinking from glasses would drop inexplicably
to 0. Third, if the reasoner was given information about the
presence and absence of poison in glasses, this factor would appear
to interact with the candidate cause; death would occur after
drinking when poison was present but not when poison was absent.
Each of these points indicates that although miscategorizing the
candidate cause can lead Equation 4 to produce probabilistic
results, such results are normatively incorrect estimates of causal
power (i.e., assumptions have been violated).

In summary, in each of these scenarios, assumptions required by
the power PC theory are violated and lead to the appearance of
indeterminism. Thus, these cases do not contradict the claim that
determinism should necessarily lead Equation 4 to produce esti-
mates of 0 or 1 when the necessary assumptions are met. Instead,
each of these situations further illustrates how incomplete or
incorrect knowledge can lead to the appearance of indeterminism.

Are These Assumptions Met in the Real World?

So far, we have argued that if a reasoner’s goal is to estimate
causal powers (as claimed by the power PC theory), there is no
need to derive causal powers through Equation 4 because they are
either 0 or 1 when all the assumptions required for Equation 4 are
satisfied. Let us now consider the possibility that causal powers
can be probabilistic—for reasons that we cannot grasp—and there
is a need to quantify causal powers and, hence, a need for an equation
like Equation 4. This possibility brings up a question of whether
Equation 4 computes causal power in the real world, that is, whether
the assumptions necessary to apply Equation 4 are met in the real
world. In this article, we focus on Assumptions 2 and 4 above.4

Accurate assessment of Assumptions 2 and 4 requires the rea-
soner to know something about the nature of a (i.e., how the
composite of alternative causes influences the target effect, e) a
priori. Yet, because a can be unobserved, it is unclear how this
might occur. How would one know whether an unobserved factor
had the ability to prevent the effect or that an unobserved factor
interacted with the candidate cause to bring about the effect? If it
is difficult to check whether these assumptions are satisfied in
practice, is it the case that these assumptions are safe to make in
the real world? Orthogonally, even if these assumptions are of
questionable validity in the real world, is it the case that people
make analogous assumptions of the world? We would argue that
these assumptions are almost always violated in the real world and
that people do not normally make these assumptions.

Consider Assumption 4, for example. Equation 4 requires that
alternative causes (even those that are unobserved) be generative
in nature. Otherwise, “there is no unique solution [for causal

power] in general” (Cheng, 2000, p. 239).5 This is true even
though one can apply these equations to either generative causes or
inhibitory causes. This is also required when estimating conjunc-
tive causal power (Novick & Cheng, 2004). Yet, it is not clear how
one would guarantee the validity of this assumption. For instance,
drinking coffee makes one alert unless there is some unknown
pollutant in the air that causes people to feel drowsy, unless the
person has a currently unspecified genetic predisposition to be
resistant to the effect of caffeine, and so on.

Similar arguments can be made for Assumption 2. The validity
of this assumption has been already disputed by Novick and Cheng
(2004): “Most causes in the real world . . . are complex, involving
a conjunction of factors acting in concert, rather than simple,
involving a single factor acting alone” (p. 455). Because of this
problem, Novick and Cheng (2004) provided six additional equa-
tions to compute the causal power of causes that work to jointly
influence an effect (i.e., causes that interact, say i and j).

These equations may appear to solve the problems with As-
sumption 2 raised above, but they only push the dilemma back one
step. Even when we compute conjunctive causal power of candi-
date causes i and j, assumptions that correspond to Assumptions 2
and 4 are still needed; it must be assumed that they do not interact
with a (“. . . alternative causes influence e independently of i, j,
and their conjunction”; Novick & Cheng, 2004, p. 471)6 and a
should not be preventative. Again, this requires a priori beliefs
about (potentially unobserved) alternative causes. If we cannot be

3 Cheng (personal communication, October 4, 2004) argues that because
i and a are supposed to be disjoint sets, it would be incorrect to say that
Assumption 5 is violated in our example. However, Novick and Cheng
(2004) specifically stated that causes must be binary variables: “Candidate
causes and effects are represented by binary variables or by other types of
discrete variables that can be recoded into that form” (p. 455). “Drinking
something” is one such binary variable. “Drinking poison” is yet another
binary variable. For each of these variables there is a set of occurrences that
makes the cause present. The sets of occurrences that render each of these
causes present are certainly not disjoint, but this is not uncommon; some
observations of weather render both “cold” and “windy” to be present,
some observations of foods render “salty” and “rich,” but that does not
imply that these are not separable causal factors. Our example of drinking
something versus drinking poison is a special case of overlap in which all
the occurrences that render “drinking poison” present also render “drinking
something” present (the former occurrences are a subset of the latter). This
relationship implies that the former cause entails the latter cause (i.e.
P(drinking poison|drinking something) � P(drinking something|drinking
poison) � 1), a violation of Assumption 5.

4 Assumption 1 can be thought of as a description of the notations that
the theory is using and thus is not discussed. Assumption 3 seems reason-
able. Whether people accept Assumption 5 is an empirical question and is
not discussed here (see Hagmayer & Waldmann, 2004; Luhmann & Ahn,
2003, for relevant findings).

5 See the Contextual Power section for discussion of the solution pro-
vided by Cheng (2000) in such cases.

6 “. . . an analogous assumption is logically required for some set of
candidate causes and causes alternative to them as part of the procedure for
inferring whether that set of candidates interact to influence e. Thus even
departure from the independent influence assumption requires the use of
this very type of assumption with regard to a different partitioning of the set of
causes of e. In short, this assumption is necessary” (Cheng, 2000, p. 232).
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assured that all necessary assumptions are met, then Novick and
Cheng’s (2004) equations cannot provide an estimate of causal
power of the observed conjunctive causes. For instance, we might
observe how i and j interact, but there might be other unobserved
factors that interact with i and j.

To summarize this section, we discussed two requisite assump-
tions for the power PC theory; alternative causes may not interact
with the cause being evaluated, and the alternative causes may not
be preventative. We argued that these assumptions are problematic
because they require a priori knowledge about the nature of alter-
native causes (both observable and unobservable ones) and they
are unlikely to be valid in most (or arguably all) real-life situations.
Take, for example, the extent to which a high-fat diet causes heart
attacks. To use Equation 4 we must deny the possibility that factors
such as general health, age, and genetics interact with diet to
produce heart attacks. To the contrary, it seems more reasonable
that a healthy 20-year-old’s tendency to have a heart attack would
be much less influenced by a high-fat diet than would be an
overweight, older person’s. Preventative causes such as exercise,
medication, and genetics may also be operating. Thus, we cannot
apply the power PC theory to compute causal power in this
situation. It seems it would not be an exaggeration to state that all
real-life situations are like this situation.

Contextual Power

Cheng (2000) provided an analysis of what Equation 4 com-
putes under various violations of the associated assumptions.
When the assumptions associated with Equation 4 are violated, this
equation computes what Cheng (2000) calls contextual causal
power. Contextual causal power is not causal power. Instead, it is
a measure of causal strength that is bound to the learning context.
Unlike causal power, contextual causal power will be highly
dependent on the frequency of occurrence and power of alternative
causes in a given context. Cheng (2000; Novick & Cheng, 2004)
argued that contextual causal power is still “useful” because it
places constraints on the range of causal power. Let us call this
position contextual power theory.

There are apparent contradictions between this contextual power
theory and the power PC theory. Cheng (2000) stated,

In the reasoner’s mind, causal powers are invariant properties of
relations that allow the prediction of the consequences of actions
regardless of the context in which the action occurs, with “context”
being the background causes of an effect (those other than the can-
didate causes) that happen to occur in a situation. The reasoner’s goal
is to infer these powers. (p. 227)

However, the contextual power theory appears to state that a
reasoner’s goal is to simply compute something useful.

Furthermore, the power PC theory lays out several assumptions,
each of which is a necessary condition for computing causal power
from observations. Thus, if any one of them is violated, one should
withhold his or her judgment (because the goal is to compute
causal power). In contrast, the contextual power theory appears to
state that when assumptions are violated, people would still com-
pute something useful, namely, contextual power.

There is one possible solution to avoid these contradictions. One
might assume that although a reasoner’s goal is still to compute

causal power, people are not normally aware of violations of
requisite assumptions. Such beliefs would lead reasoners attempt-
ing to compute causal power to unintentionally compute contex-
tual power. Indeed, Cheng’s (2000) descriptions of the contextual
power theory strongly imply this unawareness-of-violations as-
sumption. For instance, Cheng (2000) suggested that “reasoners
would start with the simplest representation of the causal world,
and add complications only when necessitated by evidence” (p.
232, italics added for emphasis). Similarly, Novick and Cheng
(2004) stated, “reasoners would consider more complex models
when motivated by evidence contradicting a simpler model” (p.
471, italics added for emphasis). The specific evidence they sug-
gested using is experience in new contexts. If predictions stem-
ming from causal power inferences fail in contexts other than that
in which the learning took place, “their failure would suggest a
violation of the independent influence assumption [or the assump-
tion about preventative alternatives]” (Cheng, 2000, p. 238). All of
these statements clearly imply that people cannot recognize vio-
lation of assumptions unless their predictions are tested in other
contexts.

In contrast, we argue that people are very aware that violation of
assumptions occurred.7 We have maintained that reasoners believe
in deterministic causal relations. This belief in deterministic cau-
sality necessarily entails awareness of violation of the assumptions
whenever people observe indeterminism. That is, whenever a
reasoner accidentally computes a contextual power value between
0 and 1, the reasoner acknowledges that there must have been an
unobserved alternative cause that prevents the effect and/or an
unobserved alternative cause that interacts with the candidate
cause. The fact that a violation has occurred should become
obvious.

Furthermore, we argue that people are well aware of the fact that
they do not have complete knowledge of causal interactions in the
world, and that is the reason why causal relations appear indeter-
minate. Indeed, careful examination of stimuli used in studies
presented as supporting the power PC theory also makes us skep-
tical about the presupposition that people were not aware of
violation of the assumptions even in controlled experimental sit-
uations. For instance, in Wu and Cheng (1999), one scenario
involved testing the causal efficacy of a new drug in preventing
cats from becoming fertile. It is difficult to believe that participants
would have thought that nothing in this world could prevent the
causal influence of this new drug or that there are no other events
that would interact with causal efficacy of this new drug. Simi-
larly, in Buehner et al. (2003), all stimulus materials involved the
domain of medicine, where undergraduate participants almost cer-
tainly have preconceptions about alternative interacting and pre-
ventive causes. That is, it would be safe to argue that even in
studies apparently supporting the power PC theory, participants
may have been acutely aware of the violations of assumptions.

Therefore, we see tremendous difficulties in reconciling how the
power PC theory and context power theory each suggest people
deal with violations of Equation 4’s assumptions. We have argued

7 People may not be aware of specifically which assumptions are vio-
lated and how. All they may be aware of is that there must be some
violation. This belief is sufficient for our argument that follows.
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that the assumptions required for the power PC theory are almost
always violated in the real world and, furthermore, that people
must be aware that these violations take place. Therefore, if
people’s goal is to infer causal powers, they should say either 0 or
1 when they (accurately or inaccurately) believe the requisite
assumptions are met, or they should withhold their judgments
when they notice that the requisite assumptions are violated.
Cheng (2000) argued that people can estimate contextual causal
power, but the only way to make this argument compatible with
the power PC theory’s core argument is to assume that people
mistakenly believed the requisite assumptions are met. We argued
that people are actually aware that some assumptions are violated,
which should lead them to withhold judgments according to the
power PC theory.

One Possible Alternative

There is a possibility that allows people to recognize violations
of the assumptions associated with Equation 4 and still provide
causal strength judgments. Instead of striving to compute causal
power as the Power PC theory assumes (Cheng, 1997, 2000; see
also Buehner et al., 2003), people might be attempting to inten-
tionally compute a quantity like contextual causal power. If this
were the case, not all assumptions behind Equation 4 might be
irrelevant.

Pearl (2000) provided an account of how and why one might
compute a quantity similar to contextual power.8 He argued that
when estimating the sufficiency of a cause, one can compute what
he calls the probability of sufficiency (PS). The equation for PS is
illustrated in Equation 5:

pi �
P�e�i� � P�e��i�

1 � P�e��i�
. (5)

This equation is identical to Equation 4. So, what sets PS apart
from causal power? There are two important theoretical differ-
ences: the assumptions required and the quantities sought. PS
requires only two assumptions. First, it requires that i be either
generative or preventative with respect to e but not both. Second,
it requires that i and e not be confounded. The first assumption
seems relatively benign. Pearl (2000) stated that it “is often as-
sumed in practice” (p. 291), citing the example of epidemiology in
which it is assumed that exposure to a risk factor will not protect
anyone from contraction. The second assumption is likely violated
in the real world (but see Gopnik et al., 2004; Spellman, 1996), but
we believe that people should agree to it when attempting to
estimate causal strength. That is, most people should believe that
a common cause behind two correlated factors would be reason
enough not to attempt a causal strength estimate (Goodie, Wil-
liams, & Crooks, 2003; Spellman, 1996; Waldmann & Hagmayer,
2001). The second assumption is essentially Assumption 5 in the
power PC theory. It is critical to note that PS does not require the
two assumptions that we discussed in this article (Assumptions 2
and 4). Thus, as acknowledged by Cheng (2000) herself, PS
requires, “weaker assumptions” (p. 247) than does the power PC
theory.

The second difference between PS and the power PC theory is
the quantity they are computing. The power PC theory attempts to

compute a context-free description of the sufficiency of a cause,
whereas PS seeks to describe the sufficiency of a cause in the
learning context. Counterfactually, PS can be described as the
probability that intervening to make i present will lead to e being
present given a situation in which both i and e are both initially
absent. Another way of stating this is the probability with which i
produces e (directly or indirectly, with or without help from
alternative interactive factors) in the learning context. Thus, there
is a major theoretical difference between what each of these
theories suggests people are attempting to compute (i.e., differ-
ences at the computational level in Marr’s, 1982, sense).

How does PS differ from causal power in practice? Under
Pearl’s (2000) proposal, one can speak of the PS of taking aspirin
with respect to relieving headaches, the PS of laying off a portion
of a company’s workforce with respect to reaching profitability in
5 years, or the PS of smoking with respect to lung cancer. Because
these cause–effect pairs appear to violate the assumptions required
by Equation 4, causal power cannot be computed. PS, however
(depending on whether you believe these events are not con-
founded), can be calculated. Thus, one advantage of computing a
contextual estimate of causal strength such as PS is that it reduces
the immediate requirements for computation. The downside is that
the estimate is bound to the learning context. As Hume (1739/
1987) argued, this may be the best that can be done.

Because the quantitative portions of PS and causal power are so
similar, it remains possible that evidence previously thought to
support the power PC theory may instead be evidence for Pearl’s
(2000) PS (or other models yet to be suggested). Just because
people agree to give a judgment of causal strength in an experi-
mental situation and their estimate happens to be consistent with
Equation 4 does not mean that people believe that the power PC
theory’s requisite assumptions are satisfied or that they were
attempting to estimate context-free causal power. They could be
very much aware of violations of the assumptions (as we have
argued in the earlier sections) and intentionally compute contex-
tual causal power as in Pearl’s PS.9 Indeed, work exploring the
conditions under which people withhold causal strength judgments
is completely consistent with PS. Wu and Cheng (1999) found that
people preferred not to interpret situations when the denominator
of Equation 4 was 0. Both PS and the power PC theory predict
such hesitance.

However, if what a reasoner initially set out to compute is PS
rather than causal powers, there is one interesting testable predic-
tion. If PS is correct, people should be less bothered by the
assumptions that are required only by the Power PC theory. That
is, although the power PC theory would predict that people should
withhold causal strength judgments when the power PC theory’s
other assumptions (e.g., Assumptions 2 and 4) are violated, PS

8 Obviously, it is an empirical question whether Pearl’s (2000) theory
described below is psychologically valid. Our intent of introducing this
theory here is not to advocate this as a psychological theory but rather to
illustrate the problems with the attempt to estimate causal powers.

9 Of course people’s estimates might be better described by yet another
alternative causal induction model whose quantitative predictions overlap
with the power PC theory and PS.
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would predict that it is unlikely people would do so. Such an
empirical difference additionally illustrates the importance of
closely examining assumptions and the computational goal of
models.

Summary

Our goal throughout this article has been to carefully think
through the claims made by the power PC theory. Cheng (1997)
claimed to have presented

a theoretical solution to the problem of causal induction first posed by
Hume more than two and a half centuries ago. Moreover, the fact that
this theory provides a simple explanation for a diverse set of phe-
nomena regarding human reasoning . . . suggests that it is the solution
adopted biologically by humans. (p. 398)

We have argued that this is not the case for a number of reasons.
Because the power PC theory seeks to compute a context-free

estimate of causal strength for individual, direct causal links, it
requires rather stringent assumptions to be made. We have raised
two issues with respect to these requisite assumptions. First, if they
are all satisfied, it seems as though causal power is easily com-
putable (i.e., power is either 0 or 1) unless people believe in
inherent indeterminism, which we find highly unlikely. Second,
even if people accept such a notion, they must still believe that the
world works in a very restricted manner for the power PC theory
to work. Alternative causes (especially those that are unobserved)
must work in very special ways. They must be generative and may
not interact with the candidate cause (or candidate causes in the
case of Novick & Cheng’s, 2004, equations). We argue that the
world is a messy place and that idealized situations such as this are
few and far between even in purportedly well-controlled experi-
mental situations.

If these assumptions are violated, then causal power cannot be
computed (according to the power PC theory). If one attempts to
compute causal power anyway, the resulting quantity is not causal
power. Instead, it is what Cheng (2000) referred to as contextual
causal power. Contextual causal power is not the context-free
property of individual causal links that the power PC theory
suggests people seek (Cheng, 1997, 2000; see also Buehner et al.,
2003). Instead, it is a context-dependent quantity that varies de-
pending on the composition of the alternative causal influences.

Furthermore, to make the contextual power theory compatible
with the power PC theory, one needs to assume that contextual
power is what reasoners accidentally compute while attempting to
compute causal power. We have argued that such errors should be
readily apparent because any probabilistic causal powers should
imply violations of assumptions, and thus the power PC theory
should predict that people withhold judgments. Instead, we argue
that people may actually intend to compute contextual causal
power (or something like it). Given the apparent difficulty in
computing context-free causal power, this more modest goal seems
plausible.

The power PC theory has made an important theoretical advance
by specifying the conditions under which causal powers can be
inferred (i.e., the five requisite assumptions above). Ironically, our
analysis shows that such conditions are so restrictive that causal
powers cannot be computed in the real world. Furthermore, if we

add in the relatively benign idea of deterministic causality, it
becomes more apparent that the derivations in the power PC theory
are not needed in computing causal powers.
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Postscript: Abandonment of Causal Power

Christian C. Luhmann
Vanderbilt University

Woo-kyoung Ahn
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What does it mean when causal power is greater than 0 but less
than 1? Cheng and Novick (2005) argue that when a reasoner
represents a potential cause at an inappropriately high level (e.g.,
citrus fruit instead of the true cause, oranges), true causal power
can be between 0 and 1 even when all the required assumptions
still hold. In our comment, we argued that such a case involves
confounding (properties of oranges are confounded with properties
of citrus fruit1) and thus causal power cannot be computed accord-
ing to the power PC theory. Cheng and Novick (2005) disagree and
include an illustration that they claim demonstrates the contradic-
tion inherent in our claim. In their example, P(e|i), or P(repelling
bugs|citrus fruit), is 0.5 (three oranges repel bugs, three lemons do
not), but when re-expressed as qi � P(a|i)  qa � qi  P(a|i) 
qa, they claim P(e|i) should be 0.5 � 0.5  1 � 0.5  0.5  1 �
0.75, which does not match the observed value. Note that this
expression uses a value of 0.5 for qi (i.e., causal power of citrus
fruit) on the basis of application of Equation 5 (Cheng & Novick,
2005, p. 701). From our perspective, this estimate is erroneous
because the situation is confounded, and thus Equation 5 cannot be
used.2

Another way to explain that the value of 0.5 for qi of citrus fruit
is not a normatively accurate estimate of causal power is the
following. Note that the probabilistic causal power estimate in this
case is equivalent to the ratio between the frequency of true cause
(e.g., oranges) and the frequency of the broader category (e.g.,
citrus fruits).3 It should be clear then that these probabilities are not
“invariant properties of relations” (Cheng, 2000, p. 227) because
they could easily vary (e.g., there is no natural law that constrains
the proportion of oranges in citrus fruits). If we travel to a new
context in which citrus fruits are common but oranges are rare, the
estimated causal power of citrus fruit will change. This test (sug-
gested in Cheng, 2000) indicates that the estimate of the causal
power of citrus fruit (i.e., 0.5 in the above illustration) is not
context-free and thus an inaccurate estimate of causal power.4

Thus, this example fails to show that “a probabilistic causal power
can be obtained when all of the power PC assumptions are met if
candidate cause c is an imperfect hypothesis, even for a reasoner
who assumes causal determinism” (Cheng & Novick, 2005, p.
701). That is, our claim that incorrectly categorized causes violate
the no-confounding assumption remains valid.

These difficulties associated with confounds imply that accurate
computation of causal power requires a tremendous amount of

accurate knowledge, much of which reasoners are unlikely to
possess (Cheng & Novick, 2005). We agree that this poses a
problem for accurately judging causal power and that such situa-
tions are yet another obstacle to valid causal inferences (including
the successful computation of causal power). Indeed, one could
argue that “no causal inference should ever occur” (Cheng &
Novick, 2005, p. 702). Therefore, the fact that people are not
paralyzed in their causal inferences can actually be taken as
evidence against the power PC theory itself (or any other model
that requires equally stringent assumptions).

Beyond the problem of confounding, we have also argued that
each of the assumptions required to compute causal power is
difficult to obtain (Luhmann & Ahn, 2005). To deal with these
difficulties, Cheng and Novick’s (2005) reply heavily emphasizes
the claim that contextualized causal power (Cheng, 2000) is con-
sistent with the power PC theory. Yet, Cheng and Novick still
argue that during causal judgments, one possible goal of reasoners
(perhaps a particularly important goal) is to compute causal power.
They state, “aiming for causal power and accepting contextual
power is as ‘contradictory’ as aiming for a gold medal and accept-
ing silver” (Cheng & Novick, 2005, p. 703), implying that causal
power (i.e., the gold medal) is the reasoner’s ultimate goal. How-

1 To illustrate, we refer to the “conjunction of substances in dried orange
peel [that] deterministically repels beetles” (Cheng & Novick, 2005, p.
701) as RB. The property RB is confounded with properties of the broader
category, citrus rinds. For example, the probability of RB is higher in the
presence of leathery, bitter, aromatic rinds than in the absence of these
properties.

2 Instead of using Equation 5, qi can be derived as follows. Because
P(e|i) � 0.5, P(e|i) � qi � 0.5  1 � qi  0.5  1 � 0.5. Simplifying this
expression, qi � 0.0. This value makes sense given that this example is set
up such that “some conjunction of substances in dried orange peel deter-
ministically repels beetles, and no other fruit peel . . . has this effect”
(Cheng & Novick, 2005, p. 701). Note that this derivation is only possible
from the omniscient perspective in which we already know P(a|i) and the
true cause. Reasoners would not have such knowledge, but the derivation
is presented simply to further illustrate why the value of qi used in Cheng
and Novick (2005) is incorrect.

3 More generally speaking, when causes are inappropriately represented
(e.g., true cause is a subset of the candidate cause or the true cause overlaps
with the candidate cause), causal power estimates, if calculated as in Cheng
and Novick (2005), will be equivalent to the conditional probability of true
cause (i.e., oranges) given the hypothesized causal candidate (i.e., citrus
fruits).

4 Again, we are not implying that a reasoner must perform such a test.
The fact that the estimated value is neither 0 nor 1 is sufficient to inform
the reasoner that some error or errors have taken place even though they
might not know the nature of the error(s). The test is presented here from
an omniscient perspective to illustrate why this is not a context-free causal
power.
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