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Abstract 

Past research has uncovered evidence of social influences on 
a wide variety of behaviors.  Everything from our choice of 
clothing to smoking appears to be shaped by the people we 
know.  However, little is known about the mechanisms that 
underlie these influences. Here, we report a series of agent-
based simulations demonstrating that information diffuses 
across social networks in much the same way that behavior 
diffuses.  These findings lead us to conclude that many 
previously observed social influences on behavior likely rely 
on a substrate of information transmission and representation. 

Keywords: learning, memory, collaboration, social network, 
agent-based modeling 

 

Diffusion of Behavior 

The idea of social influence has long been a topic of 

fascination for both scientists and the general public 

(Bartlett, 1932; Cialdini, 2001; Gladwell, 2000; Schelling, 

2006). The general concept of social influence is an intuitive 

one. For instance, peer pressure is a factor in adolescents’ 

tendency to drink, smoke, and engage in sexual behavior 

and some individuals slavishly follow the latest fashion 

trends, mimicking the styles seen on the runway or worn by 

celebrities. However, the intuition about social influence is 

far too narrow. The examples cited above are seen as 

exceptions; perhaps the susceptibility is restricted to a 

particularly impressionable population (e.g. adolescents) or 

perhaps influence is seen for relatively trivial behaviors 

(e.g., the clothes you wear). Such mindless imitation would 

not be seen, intuition suggests, concerning behaviors that 

are both deeply personal and of great consequence (e.g., 

suicide, how many children to have). Surprisingly, research 

has challenged this intuition, finding that social ties strongly 

influence a wide range of behaviors, including 

transformative life decisions (Christakis & Fowler, 2009; 

Watts, 2003). For example, a program of research by 

Christakis and Fowler (2007) has revealed the surprising 

“contagion” of health-related attributes such as obesity and 

smoking. 

In psychology, there is a long history of work exploring 

the influence of social context on behavior. Early work 

focused on the potentially deleterious behavioral effects of 

social influence. For example, Milgram (Milgram, Bickman, 

& Berkowitz, 1969) examined social influences on arbitrary 

behavior as a function of group size. In this study, groups of 

between one and 15 confederates stood on a New York 

street corner looking upward at a window overhead. Passing 

pedestrians were likely to mimic some aspect of the 

observed behavior (e.g., looking up) and this tendency 

increased with group size.  The classic studies of Asch (e.g., 

Asch, 1951) demonstrate the power of social influence even 

more starkly because his participants were asked about 

matters of objective fact (e.g., the length of lines). Despite 

being accurate when making judgments individually, 

participants placed with confederates tended to conform, 

producing substantial errors. 

Though past work has revealed the presence of social 

influences on a variety of behaviors, we know little about 

the mechanisms that underlie these influences. For example, 

it has been suggested that, “Social networks function…by 

giving us access to what flows within them” (Christakis & 

Fowler, 2009, p. 91). But what does flow within our social 

networks that allows for these powerful influences on our 

behavior? 

Existing Models of Social Influence 

Several mathematical models of social influence have 

been proposed (Easley & Kleinberg, 2010; Jackson, 2008; 

Lopez-Pintado & Watts, 2008). Among the most influential 

are linear threshold models (Granovetter, 1978). Such 

models assume that each individual has two mutually 

exclusive and exhaustive behavioral options available. For 

example, in Granovetter’s classic example, each individual 

chooses whether or not to join a riot. In addition, each 

individual is assumed to observe the behavior of all other 

individuals. The decision of the individual is then a function 

of their own idiosyncratic threshold and the behavior 

observed in the group. If the number of other people 

observed to be rioting does not exceed the individual’s 

threshold, she remains a bystander. If this number exceeds 

the individual’s threshold, she begins to riot. 

Several key details of the current crop of mathematical 

models should be noted. First, this work typically assumes 

“zero-intelligence agents” (Gode & Sunder, 1993) that can 

do nothing but copy the behavior of their neighbors with 

some probability (e.g., Granovetter, 1978). This is 

undoubtedly convenient, but represents a substantial 

simplification, at least when attempting to model human 

behavior. Though some behaviors may be the result of 
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innate imitative mechanisms, many more behaviors are 

deliberative, relying on individuals’ beliefs, goals, and 

desires. Second, many of the computational models of 

behavioral diffusion assume that individuals can occupy one 

of a small number of behavioral “states”. For example, in 

the rioting example discussed above, individuals are 

assumed to either be rioting or not rioting, another vast 

over-simplification. Finally, because of these 

simplifications, previous models have largely avoided 

questions about the mechanisms by which behaviors are 

transferred between individuals. Indeed, these models 

expressly omit such mechanisms by assuming that mimicry 

is the critical basis of diffusion. To address the mechanisms 

themselves, the current study takes an agent-based modeling 

(ABM) approach (Smith & Conrey, 2007; Stasser, 1988; 

Carley, Martin, & Hirshman, 2009; Parunak, Belding, 

Hilscher, & Brueckner, 2009; Coman, Kolling, Lewis, & 

Hirst, 2012) in which agents are information processing 

units capable of representing information and learning. 

The current study investigates the representation and 

transmission of information within social networks as 

fundamental mechanisms underlying these potent influences 

on our behavior. Specifically, we investigate how 

information is represented by individuals within a larger 

network and how the nature of social interactions shape the 

information as it flows through the network. 

Collaborative Memory in Small Groups 

Recent behavioral work on the social transmission of 

memory in small groups has identified several key 

mechanisms that facilitate or inhibit information 

transmission in small groups, and how the interaction 

among these mechanisms shapes convergence amongst 

group members (what is referred to as collective memory).  

The collaborative memory paradigm provides a robust 

method for measuring the transmission of information in 

small groups of two or three participants (Rajaram, 2011). 

In this paradigm, each participant is first exposed to 

experimenter-provided stimuli (words, pictures, narratives). 

Participants then form groups and recall items 

collaboratively.  Finally, participants recall items 

individually to assess the post-collaborative representations 

retained by each participant. 

The consequence of collaboration on group memory is 

counterintuitive. Though a collaborating group recalls more 

than a given individual, the group recalls significantly less 

than its potential, a phenomenon called collaborative 

inhibition (Weldon & Bellinger, 1997). To estimate the 

group’s potential, performance is compared to that of a 

nominal group: the total, nonredundant recall of an equal 

number of participants who recalled individually (Blumen & 

Rajaram, 2008; Weldon & Bellinger, 1997). Although it 

seems reasonable to assume participants perform 

suboptimally because they feel less accountable while 

working in groups (social loafing; Latane, Williams, & 

Harkins, 1979), experimental findings shows this is not the 

case (Weldon, Blair, & Huebsch, 2000). 

Mechanisms Involved During Collaboration 

The suboptimal performance of collaborative groups has 

been attributed to the retrieval disruption process where the 

output of one participant’s recall disrupts other participants’ 

attempts at recall, and as a result lowers the latter 

participants’ output (B.H. Basden, Basden, Bryner, & 

Thomas, 1997). Because each individual recalls less than 

her potential during collaboration, researchers have asked 

whether their post-collaborative representations would 

continue to exhibit this deficit. Though some forgetting does 

occur (Cuc, Koppel, & Hirst, 2007) two mechanisms 

usually enhance the quantity and accuracy of post-

collaborative representations; one, items not recalled during 

collaboration bounce back post-collaboratively (rebound) 

and, two, collaboration acts to expose each participant to 

items she might not have remembered otherwise (re-

exposure, Blumen & Rajaram, 2008, 2009; Congleton & 

Rajaram, 2011). 

Several individual- and interaction-based properties 

influence these collaborative effects. One such change of 

note relates to increase in memory errors. As one example, 

social contagion errors arise when the stimuli activate 

plausible items for recall that were never presented (B.H. 

Basden et al., 2002; French, Gary,&Mori, 2008; Reysen, 

2007; Roediger, Meade, & Bergman, 2001). Such contagion 

has been demonstrated in collaborative studies (B.H. Basden 

et al., 2002) using DRM stimuli (Roediger & McDermott, 

1995) in which a list of associatively-related words such as 

bed, rest, awake, tired, dream, wake, snooze, blanket, etc. 

leads participants to recall the never-presented lure (sleep) 

with great confidence. Propagation of memory errors in the 

real-world has been an enduring concern of cognitive 

scientists (e.g., Bartlett, 1932) but empirical investigations 

have remained elusive due to feasibility. 

Memory representations in small groups are also 

characterized by the frequency with which information is 

processed before and during collaboration. For instance, the 

individual who dominates the collaborative discussion 

benefits most from rehearsal (Rajaram & Pereira-Pasarin, 

2010) and has the largest influence on the post-collaborative 

representations of other group members (Cuc, Ozuru, 

Manier, & Hirst, 2006). Conversely, post-collaborative 

memory deficits occur for information not discussed during 

collaboration, either through omission (Cuc et al., 2007), 

rejection of correct responses (Merckelbach, van Roermund, 

& Candel, 2007), or group conformity to incorrect responses 

(Reysen, 2005). We have further shown that frequency of 

discussion prior to or during collaboration changes both 

collaborative group recall and post-collaborative memory; 

when information is repeatedly processed prior to 

collaboration, it can reduce or even eliminate collaborative 

inhibition in group recall (Congleton & Rajaram, 2011; 

Pereira-Pasarin & Rajaram, 2011), and improve post-

collaborative memory (Congleton & Rajaram, 2011). Just as 

interestingly, when groups are given the opportunity to 

discuss more frequently this too reduces collaborative 

inhibition in group recall (B.H. Basden et al., 2000; Blumen 
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& Rajaram, 2008).  These behavioral outcomes raise 

intriguing questions about how frequency of discussion 

influences group-level representations in large social 

networks. 

 Yet another intriguing finding concerns the effects of 

group size. Even within small groups, research shows that 

as group size increases (from 2 to 3 or 4 members) 

collaborative inhibition increases with group size (B.H. 

Basden et al., 2000; Thorley & Dewhurst, 2007). This raises 

the question about whether larger social networks would 

display an exaggerated version of this decline or whether the 

complex interplay of mechanisms would completely change 

how the group-level representation evolves. 

Current Approach 

In the current study we investigate the processes that shape 

the transmission of information during both the 

collaborative remembering in the laboratory paradigm and 

more realistic social contexts. We take an agent-based 

modeling approach in which individuals are represented by 

computational agents and allowed to interact much as 

human subjects interact in the collaborative memory 

paradigm. The agents are endowed with simplified memory 

models capable of storing a set of N items (e.g., words). The 

memory model consists of two separate representations. 

First, agents represent a set of inter-item associations that 

exist prior to any social interaction (a matrix denoted S). 

These associations represent pre-experimental knowledge 

such as the semantic associations between words. For the 

sake of simplicity, these inter-item associations were 

assigned random values (within the range [0,1]) in the 

current simulations.  More systematic prior knowledge 

could obviously be constructed, particularly if such factors 

were important for specific research questions. For example, 

lists of categorized words can be simulated by constructing 

high within-category associations and low between-category 

associations, a strategy we have successfully used in recent 

modeling (Luhmann, Congleton, Zhou, & Rajaram, 2013). 

The second representation is a set of N activations (a vector 

denoted A, with elements bound to the range [0, 1]), which 

allow for learning to occur during the experimental 

experience itself. For example, these activations capture 

recent experience studying experimenter-provided stimuli 

(e.g., word lists), items generated by collaborative partners, 

and even items generated by the agent itself. 

 Agents have two behaviors. First, they may encode a 

presented item by increasing the activation associated with 

the presented item (i.e.,            , where    is the 

activation of the item and   is a learning rate). This 

encoding occurs when items are presented by the 

experimenter (i.e., during the collaborative memory 

paradigm’s initial study phase) and when agents are exposed 

to the items retrieved by other agents (e.g., during 

collaborative recall).  Second, agents can retrieve an item.  

This is done by randomly selecting an item in proportion to 

the activation levels in A (i.e., more active items are more 

likely to be generated). If the activity of the candidate item 

is above the agent’s recall threshold ( ) and has not yet been 

generated by the group, then this item is successfully 

retrieved and generated (e.g., spoken out loud). Finally, 

associates of the retrieved item (from S) have their 

activations decreased (i.e.,             where    is the 

retrieved item,     is the strength of the association between 

items i and j, and   is a forgetting rate). 

Simulation 1: Collaborative Inhibition 

Our first investigation is of the most surprising finding to 

come out of the collaborative memory paradigm: 

collaborative inhibition.  This was done for two reasons. 

First, the finding is elicited from a fairly simple 

experimental paradigm making these initial simulations 

relatively straightforward to construct.  Second, to the 

degree we are capable of successfully replicating the least 

intuitive aspect of the empirical data, we can proceed with 

somewhat more confidence that our formalism has not 

overly simplified the cognitive processes involved. 

  To simulate the collaborative memory paradigm, we first 

presented the entire list of N items to each agent in a random 

order. Three agents were then allowed to interact with one 

another. The interaction was structured such that each agent 

was given an opportunity to retrieve an item on each round. 

If an agent successfully retrieved an item, the retrieved item 

was encoded by the other two agents. Figure 1 illustrates the 

results of 1000 simulations of a collaborative condition and 

1000 simulations of a nominal condition (i.e., total, 

nonredundant recall of three agents recalling individually) 

evaluated exactly as in the behavioral studies described 

above. As can be seen, the simulation results reproduce the 

collaborative inhibition findings describe above. This result 

is likely due to the fact that each agent is endowed with an 

idiosyncratic set of activations during the initial, individual 

study phase but then learns the contents of their peer’s 

activations during the collaborative phase. Thus, the 

interaction between agents tends to increase the similarity of 

the agents’ representations and minimize the idiosyncrasies 

that make the nominal groups more successful in generating 

greater quantity. Furthermore, exploratory simulations 

suggest that having individual agents repeatedly engage in 

isolated retrieval does not diminish the performance of the 

nominal group, suggesting that the collaborative inhibition 

is due to the social interaction (e.g., retrieval disruption, 

B.H. Basden et al., 1997) rather than repeated retrieval. 

 

Figure 1 – Simulations replicate the 

collaborative inhibition effect 
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Simulation 2: Group Size 

As mentioned above, prior work with the collaborative 

memory paradigm has manipulated a variety of different 

factors.  One factor that has received surprisingly little 

attention is the size of the collaborating group despite its 

obvious real-world relevance.  Only two studies have 

manipulated group size (B.H. Basden, Basden, and Henry, 

2000; Thorley and Dewhurst, 2007), and both concluded 

that increasing group sizes produce more detrimental 

collaborative effects.  Details of these studies limit 

interpretation, however.  For example, Basden et al. (2000) 

tested 1-, 2-, and 4-person groups.  Though the 1-person 

groups recalled more than the 4-person groups, the 2-person 

groups were different from neither.  Thorley and Dewhurst 

(2007) used DRM stimuli and were specifically interested in 

groups’ tendency to falsely recall the lure items (rather than 

recall per se).  Further, the group size tested was small in 

these studies (2-4 person groups) again limiting 

interpretation.   

Here, we systematically manipulate group size and 

investigate the influence of this factor on collaborative 

inhibition.  We simulated collaborative groups ranging in 

size from two to seven as well as nominal groups consisting 

of agents retrieving in isolation.  As before, the entire list of 

N items was first presented to each agent. The agents within 

a group were then allowed to interact with one another with 

the interaction structured as described above. 

  Figure 2 illustrates the results of 1000 simulations for 

each group size. The standard collaborative inhibition effect 

(measured here as Nominal - Collaborative) was found for 

all group sizes.  However, the relationship between group 

size and collaborative inhibition was not entirely 

straightforward.  As groups grew from two to four, 

collaborative inhibition increased (replicating Basden et al., 

2000). However, as group size increased further, 

collaborative inhibition decreased.  This non-monotonic 

relationship appears to be driven by the relative balance 

between the facilitative effects offered by collaboration (i.e., 

more agents increase the probability that the group will 

retrieve a given item) and the detrimental effects of retrieval 

disruption (i.e., more collaborators means more 

opportunities to be disrupted). 

Simulation 3: Diffusion of Collective Memory 

The collaborative memory paradigms represent a realistic, 

real-world social network that is amenable to experimental 

study. However, the size of groups involved in this 

paradigm places obvious restrictions on the research 

questions that may be asked. The current simulation seeks to 

achieve substantially greater realism than the more 

traditional laboratory paradigms allow.  Specifically, we 

wish to explore how the information represented by and 

shared between individuals makes its way through larger 

social networks. 

To explore true social networks, we employed a larger 

population (60 computational agents of the kind described 

above), each of which was placed into a larger network 

structure. Though there are many potentially interesting 

network structures, we are most interested in those related to 

real world social networks.  For this reason, the current 

simulation employs a so-called small world network (Watts 

& Strogatz, 1998).  Within such a network, the shortest 

distance between two nodes is short on average despite the 

network itself being relatively sparse (most nodes are not 

neighbors).  These features give rise to the well-known “six 

degrees of separation” phenomenon.  We further chose to 

set the average degree to 2 (meaning that agents were, on 

average, connected to 2 other agents). 

 As in the simulations reported above, each simulation 

began by presenting the entire list of 40 items to each agent 

individually.  All subsequent interaction between agents 

occurred over this network.  On each epoch of the 

simulation, a random agent was selected along with one of 

that agent’s randomly selected neighbors.  This pair was 

then allowed to interact just as the collaborative groups 

simulated above (each taking a turn to retrieve, etc.).  To 

assess the diffusion of information across the network, we 

computed the similarities between pairs of agents’ 

representations (i.e., the correlation between activation 

vectors, A) after the simulations were completed.  This 

measure of similarity goes up with the overlap (both in what 

they represent strongly and what they have forgotten, i.e., 

collective memory) and goes down when one agent has 

forgotten an item that the other agent still remembers (i.e., is 

strongly active in A).  We computed the similarity between 

all pairs of agents (i.e., both neighboring pairs and non-

neighboring pairs) sorting these similarities on the basis of 

how close the two agents in each pair were to each other 

within the network (i.e., minimum distance).  Neighboring 

agents would have a distance of 1.  Two non-neighboring 

agents that shared a common neighbor would have a 

distance of 2 and so on. 

 Figure 3 illustrates the results of a 60-node small world 

network that was allowed to run for 1000 epochs.  As can be 

seen, neighboring agents acquired very similar 

representations.  This is not particularly surprising since 

neighboring agents will have interacted with each other and 

learned the contents of their neighbors’ representations.  

What is surprising is that agents at a distance of two are 

highly similar as well.  These agents never interacted with 

 

Figure 2 – Influence of group size 

on collaborative inhibition 
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one another, so direct communication cannot explain this 

similarity.  Instead, the two agents’ common neighbor 

presumably acted as a conduit through which information 

diffused, indirectly connecting the non-neighbors. Even 

more surprising then, is the fact that agents at distance three, 

separated by two intermediate agents, are also somewhat 

similar.  After this point, the similarity between agents 

levels off, reflecting the boundaries of collective memory in 

large networks. 

This similarity between non-neighboring agents is a 

phenomenon that has been observed in a variety of real-

world social networks and is known as hyperdyadic spread 

(Christakis & Fowler, 2009).  For example, previous work 

has shown that people are 57% more likely to become obese 

if a peer (e.g., friend) becomes obese and 20% more likely 

to become obese if a peer of a peer (e.g., a friend of a friend) 

becomes obese.  Furthermore, in many of the behaviors 

studied within social networks, hyperdyadic spread from a 

given node in the social network has been found to extend to 

three “hops” from that node (e.g., to the friend of a friend of 

a friend) but not beyond – what Christakis and Fowler 

(2009) have termed the three degrees of influence rule.  The 

fact that our simulations comply with this rule is interesting 

because the standard finding of hyperdyadic spread 

concerns the spread of behavior whereas the current results 

reflect the spread of information.  Exploratory simulations 

employing other network structures (e.g., chains, trees) have 

either failed to uncover strong hyperdyadic spreading or 

failed to conform to the three degrees of influence rule.  

This suggests that this class of phenomena may be jointly 

driven by both the details of the social networks in which 

we live (e.g., small-world networks) and the constraints of 

human learning and memory. 

Discussion 

Broadly speaking, the goal of the current study has been to 

investigate social influence in real world social networks.  

Prior research has developed formal models to capture how 

behaviors diffuse amongst large groups, but these 

formalisms have been relatively agnostic about the 

underlying psychological mechanisms, instead modeling 

such behaviors as being literally contagious.  Here, we have 

argued that the cognitive processes governing learning and 

memory are likely candidates for such mechanisms as they 

are in prime position to influence the representations 

individuals hold and transmission of information between f 

Past work using the collaborative memory paradigm has 

provided useful empirical data with which we can begin to 

explore our proposal.  In this paradigm, groups of 

individuals first study items in isolation before collaborating 

in groups to recall these same items.  Despite the practical 

limitations posed by this paradigm (e.g., small group sizes), 

the literature has provided a wealth of insights into the 

social influences on learning and memory.  These insights 

include the role of retrieval disruption, re-exposure, and 

error correction, the influence of group size, and phenomena 

such as collaborative inhibition and error propagation. 

In the current study, we have taken an agent-based 

modeling approach, simulating individuals as relatively 

simple information processing units capable of representing 

information, learning from experience, and interacting with 

other agents.  In order to evaluate our proposal, we selected 

three different phenomena to explore.  We first investigated 

the robust collaborative inhibition effect.  Our simulations 

replicate the standard pattern of results, with collaborative 

groups under-performing relative their controls.    We next 

simulated the somewhat less thoroughly studied role of 

group size on the collaborative inhibition effect.  Here, we 

found that our simulations were capable of replicating the 

effects observed in the literature (increasing collaborative 

inhibition with increasing group size) but also made 

predictions about the boundary conditions of these effects.  

Finally, we extended our findings beyond the collaborative 

memory paradigm to investigate agents in a larger social 

network.  Here, we found that our simulations exhibited 

hyperdyadic spread, a standard empirical finding in the 

diffusion of behavior across social networks. 

We take the success of the current simulations as 

evidence in favor of our proposal.  Our simulations 

demonstrate that the spread of information across 

connections in a social network mirrors the way in which 

behavior spreads across those same connections.  Thus, it 

seems likely that social influence, and particularly the 

diffusion of behavior, relies on a substrate of information 

transmission and representation. 
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