
Confounded: Causal Inference and the Requirement of Independence

Christian C. Luhmann (christian.luhmann@vanderbilt.edu)
Department of Psychology, 2 Hillhouse Ave

New Haven, CT  06511 USA

Abstract

One of the most important requirements for accurate causal
inference is that there be no confounds; the cause being
evaluated must occur independently of all other causes.
When this requirement is not met, causal inferences are likely
to be incorrect.  The current study asks participants to judge
how informative various situations are with respect to
drawing causal inferences.  Contrary to normative principles,
participants appear to believe that many confounded
situations are just as informative as unconfounded situations.
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Introduction
To evaluate the causal influence of a given factor,
experiments often use two groups: the experimental group
that includes the factor of interest and the control group that
does not.  For example, a doctor who wants to test the
efficacy of a new medication would give one group of
patients the new medication and give another group of
patients a placebo.  The principles of experimental design
mandate that these two groups ideally be identical in all
respects except for the factor of interest (e.g. medication).  If
the two groups also differ in some other respect (e.g.
gender), the experiment is said to be confounded.

Confounded situations make causal inferences difficult.
Imagine that the results of our medication study
demonstrated a significant outcome; the experimental group
experienced fewer symptoms than the control group.  Can
we make conclusions about the effect of the new
medication?  The difference in symptoms may be because of
the new medication.  However, the difference in symptoms
may also have been due to the unintended difference
between groups (e.g. gender).  How do we differentiate
between these two alternatives?  What is the correct
inferential strategy in such situations?

Recognizing and dealing with the implications of
confounds is part of life for seasoned experimentalists.
However, lay reasoners must deal with similar quandaries
when attempting to evaluate causes in everyday life.  In fact,
because people must typically rely on non-experimental
observations, they are actually in a disadvantaged inferential
position.  It is currently unclear how and how well people
deal with confounds in everyday reasoning.  The current
study aims to evaluate how confounded situations influence
people’s causal judgments.

Models of Causal Inference
In experimental design, confounds are typically described as
an unintended difference between the experimental and
control groups (as in the example above).  More formally, a
confound occurs when the cause of interest, C, and some
alternative cause, A, occur in a statistically dependent
manner (i.e., P(A|C) ≠ P(A|~C) where the tilde indicates
absence)1.  As will be shown, independence is a general
requirement for valid causal inference.

Early models of causal inference made no special
allowances for confounded situations.  For example, DP
(Jenkins & Ward, 1965) computes the causal influence of C
on an effect, E, according to the following equation:

DP = P(E|C) – P(E|~C) (1)
Thus, DP compares the probability of E in the presence C
with the probability of E in the absence of C.  When
Equation 1 is significantly positive, C is judged to cause E.

The computation suggested by DP does not differentiate
between confounded and unconfounded situations; Equation
1 is used in all situations.  This is problematic because
violations of independence can lead to erroneous causal
inferences.  For example, imagine that an alternative cause,
A, has a significant influence on E and occurs more often
when C is present than when it C is absent.  P(E|C) will be
large, not because of C’s influence, but because of A’s
influence.  The resulting DP will be significantly positive
even when C has no influence.  Thus, reasoners who use DP
to evaluate causal influence can make erroneous causal
inferences.

Fortunately, people’s behavior does not conform to these
predictions.  For example, Spellman (1996) had participants
observe an experiment in which two causes (a red and a blue
liquid) were administered to various plants to see if they
affected blooming.  Participants received a set of
observations, each of which described a specific plant.  Each
observation specified whether that plant received the red
liquid, whether it received the blue liquid, and whether it
bloomed.  Some of the plant experiments were
unconfounded; the two liquids were administered
independently of each other.  Other situations were
confounded; independence was violated.  Participants were
then asked to evaluate the causal influence of one of the
liquids.

When the situation preserved independence, participants’
judgments matched the predictions of D P.  When the

                                                            
1 Greenland, Robins, & Pearl (1999) refer to situations that violate
independence as non-collapsible.  For clarity, I will refer to such
situations as confounds or violations of independence.



situation violated independence, participants’ judgments
deviated from DP.  Participants appeared to recognize the
confounded situations as such and adjust their reasoning
accordingly.  In these situations, participants’ judgments
suggest that they applied Equation 1, not to the entire set of
data as DP suggests, but to a subset of the presented
observations.  Furthermore, participants did not simply use
arbitrary subsets; the subsets used were those in which the
two causes were independent of each other (generally using
the observations in which the alternative cause was absent).
That is, because the entire set of observations violated
independence, participants used a subset of data in which
independence was preserved.  Spellman (1996) refers to this
operation as conditionalizing and argues that such
judgments are normative.  In terms of avoiding problematic
confounds, conditionalizing certainly appears to be
normative since it establishes independence and thus
permits valid causal inferences.

Thus, the suggestions of Spellman (1996) appear to
render the problem of confounds moot.  All that is needed is
a focal set in which independence is satisfied and the
problem of confounds disappears.  However, imagine that
our medication study is in fact confounded (e.g. more males
in the experimental condition than in the control condition)
but we have no record of our patients’ genders.  How do we
construct a focal set in which medication-gender
independence is guaranteed?  It is unclear how one would
guarantee independence in any given focal subset without
information about the presence/absence of alternative
causes.  What are reasoners to do?  Conditionalizing can’t
help when the alternative cause is unobserved because we
cannot test for independence in any subset of observations.
Because of this, even reasoners who wish to conditionalize
cannot be guaranteed to make correct inferences.

This difficulty has lead researchers to begin describing the
conditions required for normative (i.e., infallible) evaluation
of causal influence.  Inferential errors can then be evaluated
with respect to these conditions and ultimate allow a more
detailed understanding of people’s behavior.  For example,
Cheng’s (1997) power PC theory (PPC), relates DP to a
normative quantity called causal power.  When
independence is violated, causal power cannot be accurately
computed.  Pearl (2000) derives a slightly different quantity
(called PS) that also requires independence.

Given these analyses, what is the appropriate inference to
make when confronted with unobserved alternative causes
that violate independence?  Though PPC and PS suggest the
need for independence, neither prescribes measures to
actually attain independence.  Thus, one reasonable strategy
might be to avoid making strong inferences at all.  Given the
uncertainty such situations create, it might be better to wait
for additional information.  If pressed to make a judgment,
reasoners should certainly do so with little or no confidence.

Given people’s sensitivity to observable violations of
independence, perhaps they will be equally astute when
faced with these more uncertain situations.  What little work
has been done on such situations (Perales, Cheng, & Catena,

2001, April; 2001, September) suggests that reasoners may
be sensitive to unobserved confounds.

Participants in the Perales, et al. study were given
information about how two causes varied with each other.
The relationship between the two causes either preserved or
violated independence.  Participants were then given
information about how the effect varied with one of the two
causes (the target cause).  The other cause was hidden from
view, preventing participants from conditionalizing.  In one
condition, effect varied with the target cause perfectly (DP =
1.0).  I refer to this as the Deterministic condition.  In the
other condition, the effect varied only moderately with the
effect (D P = .66).  I refer to this as the Probabilistic
condition.  Participants were then asked how informative the
entire situation was with respect to evaluating the strength
of the target cause.  Participants rated unconfounded
situations as significantly more informative than
confounded situations.  These findings suggest that
reasoners are generally concerned with violations of
independence and recognize the inferential dilemma they
entail.

This study leaves many questions unanswered, however.
For example, the Deterministic condition creates special
circumstances for confounds.  Contrary to the normative
analyses, when the effect always and only follows the target
cause, confounds do not generally prevent causal inferences.
It is only when the target and alternative causes correlate
perfectly that inferences are prevented (see below for a more
detailed explanation).  This suggests that participants’
judgments in the Deterministic condition may not
necessarily generalize to other confounded situations.

This realization points to a more general problem.  The
two causes in Perales’ study confounded situation were
perfectly correlated (i.e., P(C|A)=1, P(C|~A)=0).  This
condition provides a rather weak test of how confounds
influence causal inferences.  When the two causes are
perfectly correlated, causal inferences about one cause (but
not the other) are clearly impossible.  It is unclear how
reasoners might deal with less extreme violations of
independence.  It certainly seems possible that Perales’s, et
al. participants could have judged the confounded condition
as uninformative because of the extreme nature of the
violations used in the study.  Violations of independence
may be of less concern to people if the two causes
sometimes occur separately.  The case where causes are
perfectly correlated may actually be a particularly salient
confound and thus Perales’ et al. findings may overestimate
people’s competence.

To clarify how violations of independence influence
people’s causal inferences, the current study uses a more
fine-grained manipulation of independence.  Instead of
using only extreme violations of independence, the current
study uses a spectrum of violations to better evaluate
people’s general ability to detect and deal with them.

Experiment
The current experiment consisted of three phases.  In the
first phase, participants were given information about how
two causes, C and A, varied with each other.  In the second
phase, participants were given information about how the



target cause, C, varied with the effect, E.  In the third phase,
participants were asked to make various judgments
including the extent to which the information in the first two
phases permitted causal inferences.

To systematically vary the independence of the two
causes, the current study manipulates the difference between
P(A|C) from P(A|~C) (varying from 0.0 to 1.0, see Figure
1).  The only condition that preserves independence is the
0.0 condition where P(A|C) equals P(A|~C).  All other
conditions violate independence.

Like Perales, et al., the current study also manipulated the
strength of the cause-effect relationship.  In the
Deterministic condition, the relationship between C and E
was characterized by a DP of 1.0, C and E correlated
perfectly.  In the Probabilistic condition, the relationship
between C and E was characterized by a DP of .75.

 The Probabilistic condition provides a good test of how
people deal with confounds because any violation of
independence prevents valid causal inference.  According to
the normative analysis, the 0.0 condition should be rated as
highly informative because it preserves independence
between the causes.  The other conditions violate
independence and are thus uninformative according to the
normative analysis (see Fig. 2).

Normatively, the Deterministic condition should show a
different pattern.  The 1.0 condition should be rated as
uninformative because the two causes are inseparable.  All
other conditions should be rated as informative because,

regardless of independence, they allow valid inferences (see
Fig. 2).

 The Deterministic condition is unique because violations
of independence do not generally prevent accurate causal
inferences.  It is possible to correctly disentangle the
influence of the two causes.  Take the Deterministic .5
condition.  The alternative cause occurs in the absence of
the target cause four times.  On these four occasions the
effect never occurs (the effect never occurs when the target
cause is absent).  This suggests that the alternative cause
does not cause the effect.  Conversely, the target cause and
effect occur together on 16 occasions.  On 12 of those
occasions the alternative cause will also be present.  To
isolate the target cause, only the remaining four occasions
must be used.  Because all 16 occasions are identical (C and
E both occur), it makes no difference which four occasions
are used and which 12 are ignored.  The target cause is
always followed by the effect, suggesting that the presence
of the target cause always causes the effect.

Figure 2 summarizes the normative pattern of
informativeness for each condition.  As can be seen, the
patterns of informativeness are quite different for the
Probabilistic and Deterministic conditions.  In the
Probabilistic condition, the 0.0 condition should be
informative and all other conditions should uninformative.
In the Deterministic condition, the 1.0 condition should be
uninformative and all other conditions should be
informative.

Of course, to mimic these normative patterns, people must
be rather astute reasoners.  They must first recognize how
violations of independence impair causal reasoning.
Furthermore, they must realize that the Deterministic
condition presents a unique situation in which violations of
independence do not always prevent valid conclusions.

In contrast, I would suggest that people might not
recognize the inferential problems associated with
“moderate” violations of independence (conditions, .25, .5,
and .75).  Furthermore, the analysis required to recognize
the Deterministic condition as special may be too
sophisticated for typical reasoners.  Taken together, these
possibilities suggest that the 1.0 condition should be
consistently rated as less informative than other conditions.
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Figure 1 - The five conditions used in the current study.  The frist row illustrates how the two causes, C and A, vary with 
each other.  The next two rows contain conditional probabilities computed from the first row.  The bottom row contains the 
difference between the two conditional probabilities
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Figure 2 - Normative estimates of informativeness.  In the 
Probabilistic condition, the 0.0 condition should be more informative 
than all other conditions.  In the Deterministic Condition, the 1.0 
condition should be less informative than all other conditions.



Method
Fifty participants were told that they would be viewing the
results from several drug trials.  Each drug trial utilized two
medications and recorded information about any side
effects.  The participants were told that they were going to
be asked to evaluate the extent to which one of the drugs
(the target drug) caused side effects.  Half of the participants
were assigned to the Deterministic condition and half were
assigned to the Probabilistic condition.  All participants
received the five conditions illustrated in Figure 1 in
pseudorandom order.

Each drug trial consisted of two sets of information
presented on a computer.  The first screen was intended to
convey information about the correlation between two
potential causes. This screen displayed 32 patients along
with information about which of the two medications each
received.  No information about side effects was available at
this point.  How the two medications were distributed to the
32 patients is described in Figure 1, where A and C each
denote a medication.  After reviewing this information,
participants moved on to the second screen.  The second
screen provided information about the target drug and the
side effects for the same 32 patients.  No information about
the other drug was available at this point.  Additionally,
patients were shuffled between the first and second screen to
prevent participants from simply matching the two sets of
information.  Participants were also given printed copies of
all experimental information for reference.

After viewing these two screens of information,
participants were asked a set of questions.  To ensure that
the independence manipulation was effective and
noticeable, participants were asked to estimate P(A|C) as
well as P(A|~C) in terms of frequency (e.g Sixteen patients
received drug A, of those sixteen, how many also received
drug B?).  If these estimates were accurate, subsequent
results cannot be attributed to participants’ ignorance of
independence.  Most importantly, participants were asked to
judge whether the information provided allowed them to
judge the extent to which the target drug (by itself) caused
the side effects (0-Definitely Not to 10-Definitley Yes); the

same judgment elicited by Perales, et al.    Participants were
also separately asked to actually judge the strength of the
target cause.

Empirical Results
 A 2 (Deterministic vs. Probabilistic) by 5 (0.0, .25, .5, .75,
1.0) ANOVA was performed with repeated measures on the
latter factor.  The main effects of both factors were
significant (F(1, 47)=18.60, p<.0001; F(4, 188)=37.42,
p<.0001, respectively)2 as was the interaction between them
(F(4, 188)=5.07, p<.001).  For clarity, the Deterministic and
Probabilistic conditions will be further analyzed separately.

Before moving on, however, it is important to ensure that
the violations of independence were noticeable to
participants.  To do so, participants’ estimates of P(A|C) and
P(A|~C) were compared to the actual conditional
probabilities.  Not surprisingly, frequency estimates were
very accurate.  No single estimate differed from the correct
frequency by more than 1.  Because of this, the correlation
between mean estimates and true conditional frequencies
was greater than .99, p < .0001.  This finding allows for
significantly cleaner interpretation of subsequent findings.

Deterministic Condition
Figure 3 presents participants judgments of

informativeness.  As can be see, judgments matched the
normative predictions.  When the two causes were perfectly
correlated (the 1.0 condition), participants rated the situation
as less informative than in the 0.0 condition (t(24)=10.48, p
< .0001), the .25 condition (t(23)=9.71, p < .0001), the .5
condition (t(24)=8.64) , p < .0001, and the .75 condition
(t(24)=6.96, p < .0001).  In addition, the .75 was rated as
significantly less informative than the 0.0 condition
(t(24)=2.34, p<.05).  No other significant differences were
found.

Figure 4 displays participants’ causal judgments of the
target cause.  Causal ratings of the target cause mirrored
participants’ informativeness ratings.  The target cause was
rated as weaker in the 1.0 condition than in any of the other
conditions (all p’s<.001).  No other significant differences
were found.

Probabilistic Condition
It is interesting to note that informativeness ratings were

lower for the Probabilistic condition than for the
Deterministic condition.  This suggests that participants
believe probabilistic situations to be inherently less
informative than deterministic situations.  Such a belief is
not predicted by normative analyses.  According to these
accounts, probabilistic data is just as informative as
deterministic data.  Participants, on the other hand, may
believe that causes are naturally deterministic and that
apparently probabilistic relationships result from “noise.”

The pattern of participants’ informativenss judgments in
the Probabilistic condition also did not match the normative
predictions.  Instead, participants’ judgments were similar to

                                                            
2 Some participants chose not to respond to some of the queries.
The variable degrees of freedom in the following analyses reflect
this fact.
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Figure 3 - Participants ratings of how informative each 
condition was.  Error bars indicate standard error.



those in the Deterministic condition though lower overall
(see Figure 3).  As in the Deterministic condition,
preservation of independence (the 0.0 condition) lead to
participants to judge the situation as significantly more
informative than when the two causes were perfectly
correlated (M=4.54 and 1.52 respectively, t(24)=3.71,
p<.005).  Contrary to the normative prediction, the
remaining conditions (.25, .5, and .75) were all rated as
significantly more informative than the 1.0 condition
(t(24)=4.29, t(24)=3.65, and t(24)=3.51 respectively; all p’s
< .01).  No other significant differences were found.

Participants’ causal judgments are displayed in Figure 4.
The overall pattern is somewhat different than that of the
Deterministic condition.  The perceived strength of the
target cause declined steadily as P(A|C) and P(A|~C)
diverged, reaching a minimum in the .75 condition.  The
target cause in the .5 condition was judged to be marginally
weaker than the target cause in the 0.0 condition
(t(23)=1.71, p=.1).  The target cause in the .75 condition
was rated as weaker than the target cause in the .5 condition
(t(23)=3.24, p<.01).

Summary When the two causes were perfectly correlated
(the 1.0 condition), participants rated the situation as
uninformative.  Participants rated all other situations as
significantly more informative.  This was the case in both
the Deterministic condition (where such judgments are
accurate) as well as in the Probabilistic condition (where
such judgments are inaccurate).  Instead of believing that
violations of independence prohibit causal inferences,
participants appeared to believe that only complete overlap
between the two causes prevented inferences.

Analytical Results
Participants’ inappropriate beliefs about the informativeness
of confounded situations could obviously lead to erroneous
causal inferences.  However it would be more compelling to
actually assess accuracy instead of contemplating
hypothetical possibilities.  How appropriate were
participants’ causal strength judgments?

To help answer this question, I computed the maximum
likelihood estimate (MLE) of the strength of both the target
and alternative causes.  Unlike other measures of causal
influence (e.g. Cheng, 1997; Pearl, 2000), the MLE does not
compute infallible estimates of causal influence.  Instead,
the MLE provides the “best guess” estimate of causal
influence, which may turn out to be incorrect.

The current design withholds two important quantities
from participants (i.e., the causal strength of the target cause
and the causal strength of the alternative cause).  It is
possible to compute the likelihood with which each possible
combination of values for these two quantities would
produce the observed data.  The most likely pair is then
deemed to be the MLE.  For this analysis, I assume that
there are only two generative causes (the target and
alternative cause) and that they combine their influence in
accordance with the rules of a noisy-or gate (Glymour,
1998).  The resulting parameters characterize the degree to
which each cause is sufficient to bring about the effect
(similar in this respect to Cheng, 1997 and Pearl, 2000).

The estimated strengths for the target cause are shown in
Figure 5.  As discussed above, the Deterministic condition
allows for valid inferences.  Thus, it is not surprising that
the estimates match people’s causal judgments quite well in
the Deterministic condition.  The estimated causal strength
of the target cause was maximal (1.0) in all but the 1.0
condition.  The 1.0 condition creates an ambiguity.  The
observed data could have result when either of the two
causes is maximally sufficient, regardless of the other
cause’s strength.  This ambiguity may explain why people
believed the 1.0 condition to be highly uninformative and
the associated drop in their causal judgment.

Causal judgments in the Probabilistic condition were also
similar to the MLE.  The computed estimates of the target
cause’s strength steadily decreased as P(A|C) and P(A|~C)
diverged, eventually reaching a minimum of zero in the .75
condition.  Participants’ causal judgments demonstrated
approximately the same pattern.  Judgments in the .5
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Figure 4 - Participants' causal strength ratings.  Causal strength 
could range from 0 to 10.  Error bars indicate standard error.
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Figure 5 - MLE for strength of the target cause. 
Estimates of causal strength could range from 0 to 1.



condition were less than those in the 0.0 condition and
judgments in the .75 condition were lower than those in the
.5 condition.  It is unclear whether the causal judgments in
the .75 condition can be treated as minimal (M=3.84),
though nearly a third of participants gave a causal rating of
zero, making it the modal response.  The MLE is again
undefined in the 1.0 condition, this time because no
combination of causal strengths will result in the observed
data.

 Summary In the Deterministic condition, participants’
causal judgments were highly accurate.  This is probably
due to the fact that confounding in this condition does not
cause the typical difficulties.  In the Probabilistic condition,
causal judgments were reasonable though fallible.  Indeed,
as the difference between P(A|C) and P(A|~C) increases in
the Probabilistic condition, the likelihood of the MLE
actually being correct diminishes rapidly.  Nonetheless,
people’s judgments were quite close to the “best guess”
values of the MLE.

Discussion
The results of the current study suggest that confounds do
not necessarily have the impact on people’s reasoning that
they should.  Confounds (i.e., violations of independence)
generally limit the ability to make valid causal inferences.
However, when asked to rate how informative various
experimental situations were, participants’ ratings appeared
to be insensitive to the presence of confounds.  This
ignorance, could certainly lead to erroneous causal
inferences in a variety of everyday situations.

Despite their erroneous judgments of informativeness,
participants appear to have made rather reasonable causal
strength judgments.  This finding, however, does not
diminish the error people make by ignoring violations of
independence.  Though the MLE provides the single most
probable estimate, it is highly likely to be incorrect in the
confounded situations (at least in the Probabilistic
condition).  An ideal reasoner would be able to recognize
confounds as inferential obstacles as well as make
reasonable causal strength judgments.  Doing so would
allow the good causal judgments without unwarranted
confidence.

Why did participants incorrectly believe the confounded
situations to be so informative?  It is plausible that the full
impact of confounded situations is not a completely
integrated part of people’s causal reasoning repertoire.  As
reviewed above, people do seem to control for alternative
causes when they are observable.  However, such findings
may overestimate people’s competence because the
presence of a salient alternative cause may act as a reminder
of the potential ambiguity interpretation must face.  In
everyday situations, where situations are assuredly messier,
reminders of the inferential danger may not be as obvious.

In addition, when faced with an effect that clearly varies
with a salient potential cause (as in the current study),
people may often be tempted to jump to causal conclusions

without consulting alternative explanations.  Such a lack of
critical analysis would explain a variety of erroneous
beliefs.  Superstitions are one obvious example. People
often hold beliefs about the causal influence of obviously
irrelevant actions (e.g. wearing a particular article of
clothing causing a favorite sports team to win).  These same
people may also be able to acknowledge that alternative
explanations exist for the desired outcome when pushed to
do so.  Similarly, I would speculate that at least some of the
participants in the current study would acknowledge the
uncertainty inherent in the experiment if it were pointed out
to them.  This discrepancy may suggest tension between two
modes of reasoning: an automatic mode that is stimulated
by the compelling cause-effect covariation and a more
deliberate mode that may be able to resist such temptation
(see Kahneman, 2003).
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