
In discovering causes of events, people evidently use
various types of evidence or cues (e.g., Einhorn &
Hogarth, 1986). Virtually all models of causal learn-
ing (e.g., Cheng, 1997; Rescorla & Wagner, 1972)
have focused on how causal relations are learned
based on covariation information—namely, infor-
mation about whether the presence or absence of
one event (C or ~C)\edq1\ co-occurs with the pres-
ence or absence of another event (E or ~E). Thus,
in all of these models, relevant input data are classi-
fied as CE, ~CE, C~E, or ~C ~E, as summarized in
Figure 17-1. Existing models of causal learning have
stipulated different ways in which these four types of
covariation evidence would or should be combined
to evaluate the causal relationship among events.
Yet, these models in their current forms share an
underlying assumption that all events of a given type
(e.g., CE) play an identical role in assessing causal
strength.

One model of causal induction combines covaria-
tion information into a contingency measure called

�P\edq2\ (e.g., Jenkins & Ward, 1965). The value of
�P is calculated as follow:

(17-1)

According to Equation 17-1, the different types of
covariation information play a static role in assessing
contingency. For example, all events of type CE play
a role in increasing �P regardless of the context. 
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FIGURE 17-1 A traditional two-by-two contingency
table used in models of causal reasoning.
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It cannot be the case that some CE increases �P and
some CE decreases �P.

Another causal induction model computes a
measure called causal power from covariation infor-
mation (Cheng, 1997; Novick & Cheng, 2004). For
instance, the simple causal power for a generative
cause is computed as follows:

(17-2)

Again, it should not be difficult to see that, as in �P,
the types of covariation information play static roles in
computing an estimate of causal strength in the
PowerPC theory.

Another dominant class of models is associative
learning models, such as the Rescorla-Wagner (RW)
model (Rescorla & Wagner, 1972). In this model, the
associative strength V on the nth trial for each cue is
updated according to the following calculation:

�Vn���(���Vn�1) (17-3)

In this equation, � is 1 when the outcome is present
and 0 when the outcome is absent. The parenthetical
quantity is the amount of error on the nth trial; the dif-
ference between the outcome (�)\edq3\ and the
summed associative strength of the present cues
(�Vn�1). The saliency of the cue and the outcome
are represented by the positive quantities � and the �
parameters, respectively.

Like other models of causal learning, the RW
model treats all observations of a given type uniformly
(see Wasserman, Kao, Van Hamme, Katagiri, &
Young, 1996, for details). For instance, when encoun-
tering a CE event, the change in association strength
of C is as follows:

�VCause���(�Outcome��VCause�Context) (17-4)

Given normal values for the necessary parameters,
this quantity will be positive and increase the per-
ceived strength of the relationship between the cause
and effect. Similarly, for all C~E events, the change
in association is as follows:

�VCause���(�NoOutcome��VCause�Context) (17-5)

This quantity will be negative, leading to a decrease in
the perceived strength of the relationship between
cause and effect.1
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Unlike the assumption shared by the discussed
models, we believe that each type of evidence in
Figure 17-1 is open to multiple causal interpretations.
For instance, when C is present and E is absent, then
it may be because there is a negative relationship
between C and E, because there is no relationship
between the two, or because C is indeed a cause of E
but some necessary precondition was not satisfied.
Similar interpretations can be made for each type of
contingency information (see Table 17-1).

The decision about which interpretation to use is
presumably influenced by multiple factors. One
plausible influence is the reasoner’s belief about the
causal relationship at the time the observation is
encountered. Of course, such beliefs should in turn
depend on previously encountered observations. For
example, if prior observations lead a reasoner to
believe in a positive relationship between two vari-
ables, the reasoner may be more likely to interpret
subsequent events according to the positive interpre-
tation column in Table 17-1. If someone else believes
that there is a negative relationship between events,
that person may make interpretations more like those
in the negative interpretation column.

In this chapter, we review three sets of studies,
demonstrating that people spontaneously treat the
same type of evidence differently because of beliefs
developed during prior causal induction. In particu-
lar, our major thesis throughout these studies is that
people develop hypotheses about causal relations
early during causal learning and interpret subsequent
data in light of these hypotheses. As a result, the rea-
soner’s working hypothesis can then lead to identical
data playing different roles. Such dynamic interpreta-
tions of data result in the primacy effect in causal
learning, inferences about unobserved, alternative
causes, and the context effect in interpretations of
ambiguous stimuli.

Primacy Versus Recency Effects 
in Causal Induction

The use of an existing hypothesis in the interpretation
of contingency information has great implications for
the evaluation of sequential information. If a reasoner
is given a set of evidence that suggests that C causes E,
subsequent negative information may be reinterpreted
in one of the ways shown in Table 17-1. For example,
a piece of C ~E evidence may be interpreted as an
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example of the failure to satisfy a precondition, and a
piece of ~CE evidence may be seen as the presence
of an alternative cause. Conversely, on first encounter-
ing a majority of negative evidence at the beginning of
an information set, people would interpret CE as a
spurious correlation and ~C~E as an absence of any
relationship.

Dennis and Ahn (2001) tested the prediction that
the order in which people encounter evidence would
influence causal strength estimates because people ini-
tially develop different hypotheses, which result in dif-
ferent interpretations of subsequent covariation
information. Participants observed a sequence of trials,
each describing the presence or absence of two events,
and then judged the causal strength between the two
events at the end of the sequence. Participants in the
positive-first condition observed the bulk of the positive
evidence, followed by the bulk of the negative evidence
without any explicit marking for when the second set
began. In the negative-first condition, participants
observed the bulk of the negative evidence followed by
the bulk of the positive evidence. Although the order
was different, all participants observed �P of 0.

The PowerPC theory (Cheng, 1997) does not pre-
dict an order effect. Contingency-based models calcu-
late the causal strength of an event over all available
trials at once when enough observations are accumu-
lated. Order of information does not change the prob-
abilities used in Equation 17-2. Therefore, the
ordering of information in Dennis and Ahn (2001)
should have no effect on estimates of causal strength
according to these models.

In the RW model, the strength of association
between cue and outcome is updated at each trial, mak-
ing the model sensitive to the sequence in which a series
of learning trials is presented. In our simulation of the
Dennis and Ahn (2001) experiments, the RW model
yielded clear recency effects for almost every logical
combination of parameters. The RW model predicts the
recency effect because the degree to which an outcome
is surprising determines associative learning. Evidence
suggesting a positive relationship would be more surpris-
ing after a bulk of negative evidence (negative-first con-
dition) than in the absence of such negative evidence
(positive-first condition). Similarly, negative evidence is
more surprising after presentation of positive evidence
(positive-first condition) than in the absence of such evi-
dence (negative-first condition). Consequently, in both
conditions, the later information is more surprising and
hence has a larger impact on associative strength, result-
ing in the recency effect.

Unlike the predictions of these two models,
Dennis and Ahn (2001) found a primacy effect:
Participants in the positive-first condition gave much
higher estimates than those in the negative-first condi-
tion. Given that the primacy effect can pose a critical
problem for all existing models of causal induction
and that some research has found the opposite order
effect of recency (Collins & Shanks, 2002; López,
Shanks, Almaraz, & Fernández, 1998), it is crucial to
understand the conditions under which the primacy
effect occurs. Dennis (2004) and Marsh and Ahn
(2005b) examined two possible reasons for obtaining
the recency effect in causal induction.
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TABLE 17-1 Possible Interpretations for Each Type of Evidince

Evidence Positive Interpretation No Relslion Interpretation Negative Interpretation

CE C caused E, so E C has nothing to do with E, C suppresses E, but
occurred when C and C and E just happened to something went wrong,
occurred occur together so C and E occurred

together

~C~E C causes E, and E did not C has nothing to do with E, C suppresses E, and E
occur because C did not and it just happened that E did not change because C
occur did not occur when C did not did not occur

occur

C~E C causes E, but E did not C has nothing to do with E C spppresses E, so E did
occur because something not occur because C
went wrong occurred

~CE C causes E, but E was C has nothing to do with E C suppresses E, so E
caused by something else occurred because C did
in this case not occur
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One possible methodological difference between
studies finding recency and those finding primacy is
the frequency with which estimates of causal relations
were made by participants. López et al. (1998) asked
participants to estimate causal strengths multiple
times during learning (step-by-step estimates),
whereas Dennis and Ahn (2001) asked for the esti-
mate only at the end of learning (end-of-sequence
estimates). Hogarth and Einhorn’s (1992) analysis of
tasks used in the impression formation literature
found that end-of-sequence estimates induced primacy,
whereas step-by-step estimates tend to induce
recency. Hogarth and Einhorn explain that impres-
sion formation involves belief updating, and the first
piece of evidence (or an amalgamation of the first few
pieces) serves as the anchor in end-of-sequence tasks.
The anchor then serves as the light by which all other
information is updated, resulting in a force toward pri-
macy. On the other hand, in step-by-step tasks, people
are forced to revise their hypotheses whenever they
generate a new estimate, and thus the first piece of
evidence no longer serves as an anchor after an esti-
mate is made. According to Hogarth and Einhorn’s
belief-updating model, the weight of each new piece
of evidence is adjusted based on a mechanism similar
to the RW model: The more new information differs
from the current position, the more weight it receives.
Therefore, as in the RW model, the recency effect is
predicted for step-by-step estimation.

Collins and Shanks (2002) presented a more
direct investigation of the effects of estimate fre-
quency on causal induction judgments. Using the
same paradigm as in Dennis and Ahn (2001), they
found that an end-of-sequence estimation procedure
created a primacy finding, whereas more frequent
estimation (every 10 trials) produced recency. Careful
examination of Collins and Shanks’s procedure pro-
duces reasons to suspect that the recency effect might
have been induced by demand characteristics of the
frequent estimate condition. Asking for an estimate
only at the end of a sequence may implicitly cue par-
ticipants to integrate over all information they have
seen to make an estimate (e.g., “Because I have not
been asked to make an estimate yet, then they must
want me to use all of the information I have seen”).
However, when some type of judgment is asked for
every 10 trials, participants can interpret this as a cue
that only the current information should be used
(e.g., “Because I am repeatedly asked to make an esti-
mate, there must have been some change in the data

that warrants only using the most recent informa-
tion”). Collins and Shanks failed to take cautionary
measures to prevent this type of misinterpretation, as
has been done in other studies (e.g., Catena,
Maldonado, & Candido, 1998). Collins and Shanks
compounded this problem by instructing participants
that they will improve over the course of the experi-
ment (“Although initially you will have to guess, by
the end you will be an expert!” p. 1147).

Dennis (2004) replicated the work of Collins and
Shanks (2002) with two critical modifications.
Participants were asked to make causal strength
estimates at every trial. This frequency was the
strongest possible manipulation for the frequency of
estimation argument, but at the same time, it reduces
the demand characteristics in that there is no incre-
mental set of data that participants might think as
more important. Second, at each judgment, partici-
pants were asked to consider all data they had seen so
far. Adding these instructions favors neither the
recency nor the primacy effect, but eliminates the
potential demand characteristics. With these two
measures taken to eliminate the demand characteris-
tics, Dennis found a strong primacy effect despite 
the fact that participants had to make step-by-step
judgments.

A second possible explanation of recency effects is
task complexity. López et al.’s (1998) learning materi-
als were much more complex than those of Dennis
and Ahn (2001). López et al.’s participants received
information about a disease X and three possible
symptoms. In one half of the learning sequence (the
contingent block), one of these symptoms (A) was
always paired with another (B). When the compound
symptoms AB were presented, the patient usually had
the disease, but when symptom B occurred alone, the
disease was usually not present. This pairing suggests
B was a worse predictor of the disease than was A. In
the other half of the sequence (the noncontingent
block), Symptom A was paired with a new cue (C). In
this block, however, the disease occurred as often
with C alone as with Compound AC, suggesting 
that Symptom C was a better predictor than A.
Comparing the two blocks, higher ratings of the rela-
tionship between Symptom A and the disease should
be given for the contingent than the noncontingent
block. The order of these two blocks was manipulated
to create different conditions in which either the
contingent block was presented first or the noncon-
tingent block was first. López et al. found that ratings
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of the relationship between Symptom A and the
disease were higher in conditions in which the contin-
gent block was last (hence a recency effect).

López et al.’s (1998) design becomes complicated in
that they simultaneously presented another set of stim-
uli with the same structure during the same learning
phase (e.g., two contingent blocks each instantiated 
in its own disease). Furthermore, participants were
simultaneously presented with two more sets of materi-
als for the opposite order condition, thereby leading to
symptom information for four diseases presented simul-
taneously. As a way to approximately illustrate complex-
ity of the task given in this experiment (albeit in a
somewhat arbitrary way), we can say that across all four
sets of materials, participants had up to 20 hypotheses (3
single cues and 2 configural cues in each set times 4
sets) to keep track of by the time they got to the end of
the experiment. Under this situation, the recency effect
is more likely because participants would lose track of
the hypotheses that they were testing and base their
judgments on the most recent evidence. Participants
could also fail to develop any hypotheses until later tri-
als. In contrast, Dennis and Ahn’s (2001) participants
kept track of only one hypothesis. Marsh and Ahn
(2005b) propose that the recency effect found in López
et al. (1998) is an artifact of an overly complex proce-
dure. Using the identical stimuli and procedure as
López et al. but reducing the number of hypotheses to
be tested to 5, we found a strong primacy effect (Marsh
& Ahn, 2005b, Experiment 1).

In another experiment, Marsh and Ahn (2005b)
doubled the cognitive load during learning by using
two sets of stimulus materials, such that the number of
causal relations to be considered would be 10. (This
still would be half the amount López et al. found in
1998.) Given this increase, neither a recency nor a pri-
macy effect was found. In this study, participants’ spa-
tial and verbal working memory capacity was also
measured. We believe that the primacy effect did not
occur in López et al.’s study because there were too
many hypotheses to be examined early. If a subject has
a large working memory capacity, then that subject
would be more likely to be able to handle keeping track
of so many hypotheses and be more likely to show the
primacy effect. Indeed, Marsh and Ahn (2005b) found
that participants’ verbal working memory capacity pos-
itively correlated with the amount of primacy effect.

To summarize, work on order effects suggests that
basic covariation information can be interpreted dif-
ferently over the course of learning. As was indicated

by results from Dennis and Ahn (2001), Dennis
(2004), and Marsh and Ahn (2005b), information
early in a learning sequence can greatly color the
interpretation of later information. It is proposed that
this early information serves as a basis by which
hypotheses about causal relationships are formed.
Later information is then differentially interpreted in
overall estimates of causal strength. Such malleable
interpretations are in contrast with the standard view
of covariation data as uniform, static information.

Unobserved Alternative Causes

Models such as �P (Cheng & Novick, 1992),
PowerPC (Cheng, 1997), and RW (Rescorla &
Wagner, 1972) use information about whether an
event occurred (such as in Figure 17-1) to evaluate
the causal strength of variables. There are situations,
however, in which such information is not available.
Imagine a situation in which a doctor is treating a new
disease. The doctor believes that there are two poten-
tial causes of the disease. The first is exposure to high
levels of mercury, which can be measured using a
blood test. The second is thought to be a genetic
anomaly that is currently undetectable. In this case,
one of the ostensible causes (the genetic anomaly) is
unobservable. With respect to this cause, patients may
be grouped as either having the disease or not, but
they cannot be further broken down into the cate-
gories shown in Figure 17-1 (e.g., CE vs. ~CE and
C~E vs. ~C~E). Such situations thus pose a problem
for models that rely on contingency information as
their input; these models cannot render judgments
about the unobserved cause because the necessary
input is not available.

Luhmann and Ahn (2003, 2005) demonstrated
that, unlike the difficulties manifest in current models,
people spontaneously make causal judgments about
unobserved causes. The experimental situation used
in these studies mirrors the example given in the pre-
ceding section. In each case, there were two causes
and one effect. One of the causes was fully observable
(similar to the mercury levels), and one was unob-
served (similar to the genetic anomaly). The effect was
always observable. In their Experiment 1, Luhmann
and Ahn (2003) found that although they were
allowed to withhold their judgments, participants were
willing to make estimates on causal strength of unob-
served causes. Because unobserved causes do not yield
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covariation information, these findings imply that peo-
ple used a different source of knowledge to make judg-
ments about the unobserved causes.

A critical finding of Luhmann and Ahn (2003) was
that observations of what the authors refer to as unex-
plained effects led to differential causal judgments of
the unobserved cause. Unexplained effects are occa-
sions on which the effect occurs in the absence of any
observed cause. In the above example, unexplained
effects would be an instance in which a person
contracts the disease but tests negative for mercury.
Luhmann and Ahn (2003) found that people judged
the unobserved cause to be stronger when such
instances of unexplained effects occurred than when
they did not occur.

Unexplained effects imply the existence and oper-
ation of an unobserved alternative cause on those
occasions, and that this belief triggers the creation of
a hypothesis about the unobserved cause. Because
unexplained effects indicate that the unobserved
cause was responsible for the effect on that occasion,
the hypothesis about the unobserved cause should ini-
tially posit a positive (i.e., generative) relationship of
nonzero strength between the unobserved cause and
the effect. This hypothesis is assumed subsequently to
operate as described in the preceding section; that is,
the hypothesis about the unobserved cause will color
the interpretation of subsequent experience.

Specifically, our prediction was that if people
maintain a hypothesis about the unobserved cause,
then observations should be interpreted as confirming
this belief (Lord, Ross, & Lepper, 1979). Thus, in
conditions with unexplained effects, participants
should believe the unobserved cause to be responsi-
ble for the target effect and thus interpret observations
to conform to this belief. For instance, in the subse-
quent CE trials (i.e., joint presence of the observed
cause and the effect), participants would believe that
the unobserved cause is likely to be present as well,
whereas in the subsequent ~C~E trials, they would
believe that the unobserved cause is unlikely to be
present. Next, we describe two experiments testing
this prediction.

The first study sought to evaluate people’s explicit
beliefs about the presence or absence of the unob-
served cause. To do so, we provided participants with
a causal learning task like that used by Luhmann and
Ahn (2003). To reiterate, one of the causes and the
effect were fully observable, and the other cause 
was unobservable. In addition, after each trial, we

explicitly asked participants to judge how likely it was
that the unobserved cause was present on that occa-
sion. Twenty-four participants viewed each of the four
contingencies shown in Table 17-2 and made their
likelihood judgments using an 11-point scale (0, defi-
nitely not pressed; 10, definitely pressed).

Table 17-3 shows mean ratings broken down by
the four conditions and four trial types. The first
finding to note is that the unobserved cause is most
likely to be present during unexplained effects (~CE)
trials, as expected. In the next analyses, we examined
whether participants interpreted trials in light of their
beliefs about the unobserved cause. If participants are
interpreting observations as consistent with their
beliefs about the unobserved cause, then they should
believe that the unobserved cause covaries with the
effect more in the two conditions with unexplained
effects than in the two conditions without unex-
plained effects.

To test this, we compared CE trials and ~C ~E tri-
als, the only trial types shared among the four condi-
tions. If participants believed the unobserved cause
covaried with the effect (which we predicted to be the
case in the conditions containing ~CE), then partici-
pants should believe the unobserved cause to be more
likely present on CE trials and more likely absent on
~C~E trials; the unobserved cause should covary with
the effect. Participants who do not believe the unob-
served cause covaried with the effect (which we pre-
dicted to be the case in the conditions without ~CE)
may believe that the likelihood of the unobserved
cause being present is more similar on these two trial
types; the unobserved cause should not covary with
the effect.

For each participant, their average rating for ~C
~E trials was subtracted from their average rating
for CE trials. This composite score serves as an index
of the degree to which participants believed the unob-
served cause to vary with the effect. A 2 (C ~E present/
absent)	2 (~CE present/absent) repeated measures
analysis of variance was performed on this composite.
This analysis revealed a significant main effect of
unexplained effects (~CE trials), F(1, 23)�8.77, mean
square error�84.52, p 
.01, because the composite
was higher in conditions that included ~CE (Mean
[M]�3.60) than on conditions that did not include
~CE (Mean�1.72). This analysis suggests that unex-
plained effects not only lead to the perception of a
stronger unobserved cause (as demonstrated by
Luhmann & Ahn, 2003), but also led participants to
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TABLE 17-3 Average Trial-by-Trail Likelihood Ratings For the Various Trial Types in Each Condition Plus
Marginal Averages

Condition ~CE Present, ~CE Present, ~CE Absent, ~CE Absent, 
C~E Absent C~E Present C~E Absent C~E Present

E ~E E ~E E ~E E ~E

Likelihood (U) C 5.8 5.80 C 5.38 3.41 4.40 C 4.1 4.10 C 5.26 3.76 4.51
~C 7.51 2.15 4.83 ~C 7.84 1.82 4.83 ~C 3.16 3.16 ~C 2.7 2.70

believe that the unobserved cause covaries with the
effect. Participants interpreted the unobserved cause
differently on identical trials depending on whether
they had observed unexplained effects.

Thus, we have demonstrated that unexplained
effects result in the belief that the unobserved cause
covaries with the effect and the belief that the rela-
tionship between the unobserved cause and the effect
is strong. An obvious question is whether these beliefs
are related. It seems plausible that people are able to
make causal judgments about unobserved causes
(and were confident in these judgments; see
Luhmann & Ahn, 2003) because they have informa-
tion about how the unobserved cause covaries with
the effect. This information is not present in the input
as current theories of causal learning assume but
rather is imposed on the input by the reasoner. To
explore whether people’s trial-by-trial beliefs influ-
ence their subsequent causal judgments, a second
experiment was conducted using a paradigm similar
to that of Dennis and Ahn (2001) as described in the
preceding section.

Fifty participants viewed each of two causal situa-
tions. The two situations used the set of trials
represented in Figure 17-2. This set of trials was
divided into two blocks, although there was nothing to
indicate this to participants. One block contained
unexplained effects, and the other did not. These two

blocks could be ordered in one of two ways; the block
containing unexplained effects could be presented
either first or second. After viewing all trials, partici-
pants were asked to judge the causal strength of both
the observed and unobserved cause. Note that,
because the only manipulation was the order of the
two blocks, participants always saw the same set of
covariation data by the end of the sequence. Thus,
any differences between conditions cannot be a result
of the number or type of trials observed.

We predicted the order effect for the following rea-
sons: When participants observed unexplained effects
early, considerably more evidence was available to
interpret as consistent with, and thus reinforce, the
hypothesis about the unobserved cause. This addi-
tional reinforcement would lead participants to per-
ceive the unobserved cause as a strong causal
influence. When participants observed unexplained
effects late in experience, a significant number of the
observations had already occurred and thus were not
interpreted in light of the newly formed hypothesis.
This would lead participants to perceive the unob-
served cause as a weaker influence.

As summarized in Figure 17-3, participants gave a
significantly higher rating for the unobserved cause in
the early unexplained effects condition (M�73.50,
standard deviation [SD]�25.90) than in the late-
unexplained-effects condition (M�61.66, SD�27.79), 
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TABLE 17-2 Contingencies Used in Each of the Four Conditions

Condition ~CE Present, ~CE Present, ~CE Absent, ~CE Absent C,
C~E Absent C~E Present C~E Absent C~E Present

E ~E E ~E E ~E E ~E

Contigency structure C 10 0 C 10 10 C 10 0 C 10 10

~C 10 10 ~C 10 10 ~C 10 10 ~C 0 10

Each condition contains CE and ~C~E observations. Only the presentation of ~CE and C~E observations differs.
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t(49)�2.89, p
.01. These results support the idea that
observations obtained after creating an unobserved
cause hypothesis act to reinforce the hypothesis.

Note that this is not the only possible outcome.
Theoretically, when participants in the late unex-
plained effects condition first observed an unexplained
effect, they could create an unobserved cause hypoth-
esis and reevaluate all previously obtained observa-
tions. Such retrospective reevaluation would likely
require significant cognitive resources and thus may
not be a generally economical strategy.

Consistent with the work of Dennis and 
Ahn (2001), these studies indicate that identical

observations can be interpreted differently depending
on the beliefs held by the observer. The two studies
reported in this section demonstrate that such
dynamic interpretations occur when evaluating unob-
served causes just as they do with observed causes.
Moreover, this differential interpretation influenced
both explicit likelihood ratings and causal strength
ratings. These findings suggest that unobserved causes
are sometimes treated very much like observed
causes. The observer can establish beliefs about an
unobserved cause, interpret observations to overcome
the absence of covariation information, and subse-
quently compute causal strength.
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FIGURE 17-2 A summary of the observations presented to participants. The contingency
table summarizes the covariation of the observed cause and the effect. The set of obser-
vations was divided into two blocks. One block contained unexplained effects; the other
did not. The order of these blocks was manipulated.

FIGURE 17-3 Participants’ mean causal strength judgments.
Error bars indicate standard error.
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Context Effect in Interpretations of
Ambiguous Stimuli

As discussed, the major models of causal reasoning (e.g.,
Cheng, 1997; Cheng & Novick, 1990; Rescorla &
Wagner, 1972) deal with information that is uniformly
presorted into the standard contingency table (see
Figure 17-1). What occurs if information pertaining to
a possible causal relationship is not so clearly defined
regarding which of the four evidence types it represents?
For example, consider trying to assess whether high
stress causes insomnia. There are some events that are
obviously instances of the presence of high stress (e.g.,
taking medical school entrance exams) and some events
that are easily classified as the absence of high stress
(e.g., sunbathing on a tropical island). However, there
exists a wide spectrum of events between these two
extremes that are not so clearly classified as the absence
or presence of stress (e.g., waiting in a crowd, writing an
e-mail, celebrating a milestone birthday). How would a
reasoner assess a hypothesis such as “High stress causes
insomnia” when the great amount of ambiguously iden-
tified evidence has no clear place in the classic repre-
sentations of causal information?

Similar to how an existing hypothesis can affect
the interpretation of sequential information and influ-
ence beliefs about an unobservable cause’s operation,
a governing hypothesis can be used to assess ambigu-
ous causal information. For example, imagine that a
reasoner keeps experiencing events in which high
stress preceded a night of insomnia, whereas insomnia
never followed a stress-free day. The reasoner then is
asked to assess whether a friend was experiencing high
stress given the observation that after a day spent read-
ing the person did not sleep. The reasoner would use
personal belief that high stress causes insomnia to
interpret the observation as an instance of a high-
stress day. Even though a day of reading in itself might
not be stressful (e.g., reading the latest romance
novel) or could be stressful (e.g., searching job post-
ings in the classifieds), the given instance of reading
would be classified as stressful because such an inter-
pretation matches the reasoner’s existing theory of the
relation between events. In this way, information not
inherent to the standard representation of covariation
information would influence causal estimation.

To test the hypothesis that a governing causal
hypothesis can cause an ambiguous event to be reinter-
preted as a specific instance outlined in Figure 17-1,
Marsh and Ahn (2005a) introduced ambiguous causal
candidates into a traditional causal induction paradigm.

Participants were presented with trial-by-trial evidence
that indicated a strong covariation between two easily
distinguishable, well-defined causal candidates and an
outcome (see Figure 17-4 for actual trial frequencies).
In one such sequence, for example, participants saw
evidence that depicted bacteria that were of long (the
candidate cause) as predominantly paired with the
presence of nitrogen in soil samples (the effect event),
whereas bacteria that were short were paired with 
the absence of nitrogen. To this basic paradigm, trials
were added throughout the trial sequence depicting a
candidate cause that was ambiguous regarding its mem-
bership in the cause-present or cause-absent class. In the
previous example, these ambiguous trials would take
the form of bacteria of intermediate length paired with
the presence of nitrogen. The question of interest was
whether participants would be willing to include this
information in their assessments of causal information.

To address specifically if and how ambiguous infor-
mation may be incorporated into evidence about
causal relationships, Marsh and Ahn (2005a) in their
Experiment 1 had participants report how many
pieces of evidence they had observed by asking four
questions that corresponded to the types of informa-
tion found in  Figure 17-1 (e.g., “On how many cases
were the bacteria long and the nitrogen was present?”
represented the CE cell). It was hypothesized that par-
ticipants would use their current belief about the
causal relationship between events to incorporate 
the ambiguous information into the traditional types
of covariation evidence. For instance, if a participant
believed that long bacteria (C) were generally associ-
ated with the presence of nitrogen in soil samples (E),
then evidence depicting an ambiguous causal candi-
date (A) paired with the presence of nitrogen (i.e., a
piece of AE evidence) would be interpreted as a piece
of CE evidence. Under the same hypothesis, informa-
tion that depicted the ambiguous cause in the absence
of the effect (A~E) would be interpreted as evidence of
type ~C~E. Therefore, ambiguous evidence of type
AE should only be reflected in the CE estimate and
likewise for ambiguous evidence of type A~E and the
~C~E estimate. Estimates of the two types of negative
evidence should not be affected by ambiguous infor-
mation because the negative evidence does not
correspond to a way in which a hypothesis could be
used to interpret ambiguous information. These pre-
dictions are depicted in Figure 17-4.

Participants in Marsh and Ahn’s study (2005a) spon-
taneously assimilated ambiguous information into esti-
mates of causal information. (See Figure 17-4 for mean
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estimates of the four types of evidence.) Specifically, if
the ambiguous causal candidate was always paired with
the presence of the target effect (ambiguous-effect), sig-
nificantly more information was reported of type CE
(M�27.5) than of type ~C~E (M�20.7), t(19)�2.7,
p
.02. If the ambiguous causal candidate was always
paired with the absence of the effect (ambiguous-no
effect), more information was reported of type
~C~E(M�28.8) compared to type CE (M�19.3),
t(19)�3.3, p
.01. In both of these conditions, there
was no difference in the amount of information
reported between the C~E and ~CE cells, p�.20.
These findings are as predicted if participants 
were using an existing belief about the relationship
between well-defined events to interpret ambiguous
information.

The described results could have been found
because participants felt forced by the constraints of
the task to report ambiguous information instead of
excluding this information or classifying it as a sepa-
rate type of evidence from Figure 17-1. To guard
against these possibilities, participants were not told

ahead of the number or what frequency estimates they
would make. In this way, participants could have
represented ambiguous information as a separate class
of information during the experiment with the expec-
tation that they would be able to report it as such in
final estimates. As a further precaution along these
lines, the actual questions for estimation were pre-
sented one at a time in a random order. Ignorance of
the complete spectrum of questions to be asked would
have allowed participants to categorize ambiguous
evidence as an additional category of information not
represented in Figure 17-1. However, participants still
incorporated ambiguous evidence.2

Another interesting finding is that the assimilation
of ambiguous information was not complete, as can
be noticed in Figure 17-4. If all of the trials illustrat-
ing the ambiguous candidate cause were assimilated
by the governing causal hypothesis, then the key 
cells in Figure 17-4 should be closer to a total of 
38 trials. It appears that only about half of the ambigu-
ous trials that could have been incorporated into esti-
mates were assimilated as such. These results seem

DYNAMIC INTERPRETATIONS OF COVARIATION DATA 289

FIGURE 17-4 Number of trials for each type of evidence. C, cause; E,
effect; A, ambiguous candidate cause; ?, unknown value of candidate
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sensible: For ambiguous information to be assimilated
by an existing hypothesis, said hypothesis must first be
created. In the beginning of the experimental
sequence, participants have yet to form a theory of
how the possible causal candidates are associated with
the effect. At that point, participants would not be
able to informatively classify the ambiguous evidence.
After observing information, the relationship between
candidate cause and effect would have become
clearer, allowing the formation of a causal hypothesis
and subsequent interpretation of ambiguous evi-
dence. Because pieces of evidence depicting ambigu-
ous causes were sprinkled throughout the trial
sequence, the early ambiguous evidence was experi-
enced without the benefit of a governing hypothesis
and therefore would not have been included in fre-
quency estimates. As discussed with respect to unob-
served causes, the cognitive load involved may be too
great for the retrospective incorporation of ambiguous
information. Therefore, only ambiguous information
presented after the formation of a hypothesis could
have been interpreted through the lens of the hypoth-
esis and thereby included in frequency estimates.

In another study,\edq4\ we further examined if the
strength of the hypothesized causal relation would
moderate the amount of ambiguous information that
is assimilated into causal judgments, such that the
stronger the causal relation is believed to be, the more
assimilation should occur. For example, if a person
believes that high stress is always followed by insom-
nia, then any day with an ambiguous level of stress
that was followed by insomnia should be counted as
an example of high stress occurring with insomnia.
However, belief in a weak relationship implies that
every time high stress is present, insomnia does not
necessarily follow. If a person believes that high stress
is not necessarily followed by insomnia, then there is
no principled reason to believe that every ambiguous
stress day would occur with insomnia. This person
should therefore be willing not to incorporate all
ambiguous stress/insomnia days as examples of high
stress and insomnia. In this way, the incorporation of
ambiguous information would be mediated by the
strength of the governing hypothesis so that less
ambiguous information should be incorporated at
weaker contingencies.

To test the effect of believed strength in causal
relations, Experiment 2 of Marsh and Ahn (2005a)
compared the treatment of ambiguous information 
in causal relationships of differing strengths. Four con-
ditions were presented, each portraying a different

strength relationship between the well-defined trials
and the presence of the effect: a perfect relationship
condition (�P�1.0), a strong relationship condition
(�P�0.6), a weak relationship condition (�P�0.3),
and a no relationship condition (�P�0). The exact
trial frequencies used in this experiment can be seen
in Figure 17-5. In all of the conditions, the ambiguous
causal candidate always appeared with the presence of
the effect, and there were 20 such ambiguous trials.
We predicted that for the no relationship condition no
preferential sorting of ambiguous evidence should
occur because no hypothesis regarding the relation-
ship between events could be formed. In contrast, for
the three conditions for which a relationship existed
between well-defined events (i.e., the perfect, strong,
and weak conditions), the ambiguous evidence would
be incorporated into the frequency estimate that
matched the governing hypothesis, specifically the CE
cell. Furthermore, the amount of assimilation would
be a function of the strength of the relationship
between the well-defined events.

Figure 17-5 depicts the results for the described
experiment (Marsh & Ahn, 2005a). For the three con-
ditions in which a relationship existed between the
well-defined events, ambiguous evidence was incor-
porated into the CE frequency estimates as predicted.
This finding is evidenced by significantly greater
information reported in the CE cell than the ~C ~E
cell for all three conditions, all t’s�2.82, all p’s
.009.
Also as predicted, this difference was not significant in
the no relationship condition, p�.18.

The results of this experiment also show that differ-
ent amounts of assimilation were reported depending
on the strength of the existing covariation relationship.
By subtracting the ~C ~E estimate from the CE esti-
mate for each condition, the amount of information
that was preferentially sorted into the CE cell was calcu-
lated. These difference scores were then compared
across conditions to see if more information was being
sorted into the CE cell at different causal relational
strengths. Figure 17-6 shows a graph of the mean differ-
ence scores for the four conditions. As the graph shows,
the stronger the covariation between well-defined
events, the more information was preferentially sorted
into the CE estimate. Significantly more information
was preferentially sorted in the CE estimate than the
~C ~E estimate in the perfect relationship condition
(M�7.8) compared to the weak relationship condition
(M�3.4). More information was also sorted preferen-
tially in the perfect condition compared to the no rela-
tionship condition (M�1.6) and into the strong
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condition (M�6.7) compared to the no relationship
condition, all t’s�2.37, all p’s
.03. In short, the
strength of the believed causal relations greatly affects
the amount of ambiguous information that is incorpo-
rated into estimates of causal information.

Having demonstrated the influence of the governing
hypothesis on interpretations of ambiguous stimuli, an
interesting question is whether people would assimilate
any unknown information. That is, how robust is this
phenomenon? To examine this issue, we created\edq5\ a
condition in which the ambiguous causal candidate was
replaced with an unknown candidate cause. More
specifically, the unknown candidate was marked with a
question mark and the word unknown appeared instead
of a picture of the bacteria. In the instructions, partici-
pants were told that there was no information known
about the candidate cause for these trials. Going back to
our previous example of the relationship between high
stress and insomnia, the unknown trials would be similar
to a situation in which a reasoner has no information
about the stress of the target person’s day (or any informa-
tion that can be used to infer the level of stress that day)
and only learned that the person suffered from insomnia.

Note that, just like our ambiguous stimuli, an
unknown candidate cause does not inform whether a
given observation is positive or negative evidence
toward a hypothesis. Thus, participants could also
assimilate these trials in a way similar to how they
assimilated ambiguous stimuli. For instance, if partic-
ipants initially believed that the target effect is caused
by a target cause, then participants could infer that an
unknown cause paired with the presence of the effect
must have been a case when the candidate cause was
present, and when the unknown cause was paired
with the absence of the effect, then the causal candi-
date must have been absent. This would be the most
sensible inference to make if a person is forced to
guess about the state of the unknown causal candi-
date. For instance, if high stress correlates with insom-
nia, on encountering a person who suffers from
insomnia, it would be reasonable to guess that the per-
son experiences a lot of high stress. Therefore, it is
possible and even plausible in our experiments that
people would spontaneously make inferences about
unknown causal candidates as they did for ambiguous
causal candidates.
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In contrast, the mere presence of uncertainty might
not be sufficient to provoke assimilation. Instead,
ambiguous stimuli might need to be present for assim-
ilation to spontaneously take place. The presence of
ambiguous stimuli might trigger a need to classify the
stimuli one way or another, which in turn results in
assimilation. For instance, on encountering a bac-
terium with medium height, one might be enticed to
determine whether it is long rather than simply leaving
it as an undeterminable state and ignoring it.

To test the boundaries of which types of causal
candidates would be incorporated into estimates of
causal information, participants in Experiment 1 of
Marsh and Ahn (2005a) were also given two addi-
tional conditions that contained unknown candidate
causes. The representation of an unknown candidate
cause was paired with the presence of the effect in
one condition (unknown-effect) and the absence of
the effect in the other (unknown-no effect). Because
unknown information is lacking any type of structure
on which a hypothesis can operate, it should not be
incorporated into estimates of causal information.
This prediction was validated in that estimates in the
ambiguous conditions differed from the unknown
conditions only in the cells predicted if ambiguous
information was being incorporated via a governing
hypothesis. That is, in the ambiguous-effect condition
the CE cell mean estimate was greater than in the
unknown-effect condition, and the ~C~E cell was

greater in the ambiguous-no effect condition than the
unknown-no effect condition. Furthermore, estimates
for the four cells of the unknown conditions did not
significantly differ from the number of well-defined
trials presented (see Figure 17-4), demonstrating that
participants can choose to exclude covariation infor-
mation and are not bound to include it by the
demands of the task.

We have demonstrated that people will incorporate
information depicting an ambiguous causal candidate
into their reports of relevant causal information. This
was found despite the fact that participants had no
advance knowledge of trial frequencies they would be
asked to estimate. Participants could have excluded
the ambiguous information in favor of waiting to
classify it as a type of evidence not found in the classic
representation of covariation information. Instead,
participants spontaneously classified ambiguous
causal candidates as the presence or absence of the
candidate cause according to their governing hypothe-
sis of the causal relationship.

Conclusion

As posited in the beginning of this chapter, we believe
that covariation information can be dynamically inter-
preted during the process of causal learning. We have
shown that such hypotheses can result in the discount-
ing of later information in an information sequence,
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resulting in a primacy effect. We have also shown that
causal hypotheses can alter the interpretation of
covariation information into supporting an alternative,
unobserved cause. In the last section, we likewise
showed that an existing hypothesis could cause infor-
mation that does not fit the normal representation of
covariation information to be included into judgments
of causal relationships. In particular, evidence that was
ambiguous and normally has no place in the models
of causal reasoning was reinterpreted by existing
hypotheses and rendered usable.

The covariation-based models of causal induction
have often been described as models of how people
learn completely novel causal relations based on raw,
untainted covariation data (see Tenenbaum and
Griffith, this volume,\edq6\ for a more elaborated
approach). We would argue that even when learning
novel causal relations, people are driven to interpret
covariation data in light of their own governing
hypothesis. Such dynamic interpretations of covaria-
tion data are beyond the scope of existing covariation-
based models.
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